Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions
Abstract
:1. Introduction
2. Methodology
- 1.
- Phase 1: Research and Classification. The present phase was divided into three steps:
- Step 1: Identification;
- Step 2: Screening; and
- Step 3: Inclusion.
- 2.
- Phase 2: Analysis. Once phase 1 was completed, the next phase was phase 2, which was the analysis of the results. The approach used for the bibliometric analysis included:
- The use of indicators for the parameters studied; and
- SNA (social network analysis) for the keywords.
- 3.
- Phase 3: Discussion. At the end of the second phase, a third and final one followed, where the results were discussed, and conclusions were drawn.
3. Results of the Bibliometric Analysis
3.1. Phase 1: Research and Classification
3.1.1. Identification (Step 1)
3.1.2. Screening (Step 2)
3.1.3. Inclusion (Step 3)
3.2. Phase 2: Analysis
3.2.1. Top Highly Influential Analysis
3.2.2. Publications by Years
3.2.3. Most Collaborative Authors
3.2.4. Research Areas Analysis
- The large number of fields in which this kind of research is involved; and
- Most papers have a transversal approach, that is, the object of each research crosses more than one field of application, thus involving more research areas.
3.2.5. Top Source Journals Analysis
3.2.6. Country Analysis
3.2.7. Affiliation Analysis
- Nine papers from China;
- Six papers from Germany; and
- Five papers from the USA.
3.2.8. Top Keywords Analysis
3.3. Phase 3: Discussion
3.3.1. Benefits of Artificial Intelligence and Machine Learning in Industrial Contexts
3.3.2. Emerging Trends of Artificial Intelligence and Machine Learning in Sustainable Manufacturing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
ID Count | Research Source | ID Doc | Year | Title | Authors | Source Title | TC |
1 | SCP | 2 | 2006 | Machine learning in bioinformatics | Larrañaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armañanzas, R.; Santafé, G.; Pérez, A.; Robles, V. | Briefings in Bioinformatics | 298 |
2 | WoS | 62 | 2008 | Data-driven modelling: Some past experiences and new approaches | Solomatine, D.P.; Ostfeld, A. | Journal of Hydroinformatics | 160 |
3 | SCP | 26 | 2016 | Learning from imbalanced data: Open challenges and future directions | Krawczyk, B. | Progress in Artificial Intelligence | 119 |
4 | WoS | 63 | 2001 | Computer go: An AI oriented survey | Bouzy, B; Cazenave, T | Artificial Intelligence | 114 |
5 | SCP | 6 | 2008 | Structured machine learning: The next ten years | Dietterich, T.G.; Domingos, P.; Getoor, L.; Muggleton, S.; Tadepalli, P. | Machine Learning | 75 |
6 | SCP | 28 | 2016 | Machine learning in manufacturing: Advantages, challenges, and applications | Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. | Production and Manufacturing Research | 52 |
7 | WoS | 64 | 2017 | Machine learning paradigms for next-generation wireless networks | Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.C.; Hanzo, L. | Ieee Wireless Communications | 50 |
8 | SCP | 3 | 2006 | Machine learning techniques in disease forecasting: A case study on rice blast prediction | Kaundal, R.; Kapoor, A.A.; Raghava, G.P.S. | BMC Bioinformatics | 48 |
9 | SCP | 4 | 2008 | A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model | Judson, R.; Elloumi, F.; Woodrow, R.W.; Li, Z.; Shah, I. | BMC Bioinformatics | 45 |
10 | SCP | 19 | 2015 | A review of intelligent driving style analysis systems and related artificial intelligence algorithms | Meiring, G.A.M.; Myburgh, H.C. | Sensors (Switzerland) | 33 |
11 | SCP | 21 | 2016 | A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients | Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. | Sensors | 31 |
12 | SCP | 1 | 2006 | Application of machine learning in SNP discovery | Matukumalli, L.K.; Grefenstette, J.J.; Hyten, D.L.; Choi, I.Y.; Cregan, P.B.; Van Tassell, C.P. | BMC Bioinformatics | 30 |
13 | SCP | 10 | 2013 | Beam search algorithms for multilabel learning | Kumar, A.; Vembu, S.; Menon, A.K.; Elkan, C. | Machine Learning | 29 |
14 | WoS | 65 | 2011 | Recommender Systems: An Overview | Burke, Robin; Felfernig, Alexander; Goeker, M.H. | Ai Magazine | 29 |
15 | SCP | 11 | 2013 | Biomedical informatics for computer-aided decision support systems: A survey | Belle, A.; Kon, M.A.; Najarian, K. | The Scientific World Journal | 27 |
16 | SCP | 23 | 2016 | Application of machine learning to construction injury prediction | Tixier, A.J.P.; Hallowell, M.R.; Rajagopalan, B.; Bowman, D. | Automation in Construction | 21 |
17 | SCP | 12 | 2013 | Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning | Lieber, D.; Stolpe, M.; Konrad, B.; Deuse, J.; Morik, K. | Procedia CIRP | 18 |
18 | SCP | 29 | 2016 | Semantic framework of internet of things for smart cities: Case studies | Zhang, N.; Chen, H.; Chen, X.; Chen, J. | Sensors | 17 |
19 | SCP | 20 | 2015 | Support vector machines in structural engineering: A review | Çevik, A.; KURTOĞLU, A.E.; Bilgehan, M.; Gülşan, M.E.; Albegmprli, H.M. | Journal of Civil Engineering and Management | 15 |
20 | SCP | 25 | 2016 | A review of classification problems and algorithms in renewable energy applications | Pérez-Ortiz, M.; Jiménez-Fernández, S.; Gutiérrez, P.A.; (…); Hervás-Martínez, C.; Salcedo-Sanz, S. | Energies | 15 |
21 | SCP | 43 | 2018 | Artificial intelligence (AI) methods in optical networks: A comprehensive survey | Mata, J.; de Miguel, I.; Durán, R.J.; (…); Jukan, A.; Chamania, M. | Optical Switching and Networking | 15 |
22 | SCP | 14 | 2014 | Fault diagnosis of automobile gearbox based on machine learning techniques | Praveenkumar, T.; Saimurugan, M.; Krishnakumar, P.; Ramachandran, K.I. | Procedia Engineering | 14 |
23 | SCP | 16 | 2014 | Improving active Mealy machine learning for protocol conformance testing | Aarts, F.; Kuppens, H.; Tretmans, J.; Vaandrager, F.; Verwer, S. | Machine Learning | 11 |
24 | WoS | 66 | 2016 | Strategies and Principles of Distributed Machine Learning on Big Data | Xing, E.P.; Ho, Q.; Xie, P.; Wei, D. | Engineering | 11 |
25 | WoS | 67 | 2015 | Recent advances on artificial intelligence and learning techniques in cognitive radio networks | Abbas, N.; Nasser, Y.; El Ahmad, K. | Eurasip Journal on Wireless Communications and Networking | 11 |
26 | WoS | 68 | 2018 | Artificial intelligence (AI) methods in optical networks: A comprehensive survey | Mata, J.; de Miguel, I.; Duran, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. | Optical Switching and Networking | 9 |
27 | SCP | 40 | 2018 | A big data driven sustainable manufacturing framework for condition-based maintenance prediction | Kumar, A.; Shankar, R.; Thakur, L.S. | Journal of Computational Science 27, pp. 428–439 | 8 |
28 | WoS | 69 | 2017 | Research and Application of a Novel Hybrid Model Based on Data Selection and Artificial Intelligence Algorithm for Short Term Load Forecasting | Yang, W.; Wang, J.; Wang, R. | Entropy | 8 |
29 | SCP | 33 | 2017 | Context Aware Process Mining in Logistics | Becker, T.; Intoyoad, W. | Procedia CIRP | 7 |
30 | SCP | 24 | 2016 | Applications of machine learning methods to identifying and predicting building retrofit opportunities | Marasco, D.E.; Kontokosta, C.E. | Energy and Buildings | 6 |
31 | SCP | 37 | 2017 | Operational Demand Forecasting in District Heating Systems Using Ensembles of Online Machine Learning Algorithms | Johansson, C.; Bergkvist, M.; Geysen, D.; (…); Lavesson, N.; Vanhoudt, D. | Energy Procedia | 6 |
32 | WoS | 70 | 2018 | Advances in Multiple Criteria Decision Making for Sustainability: Modeling and Applications | Shen, K.Y.; Tzeng, G.H. | Sustainability | 6 |
33 | WoS | 71 | 2017 | Hybrid-augmented intelligence: Collaboration and cognition | Zheng, N.N.; Liu, Z.Y.; Ren, P.J.; Ma, Y.Q.; Chen, S.T.; Yu, S.Y.; Xue, J.R.; Chen, B.D.; Wang, F.Y. | Frontiers of Information Technology & Electronic Engineering | 6 |
34 | SCP | 5 | 2008 | Performance evaluation of the NVIDIA GeForce 8800 GTX GPU for machine learning | El Zein, A.; McCreath, E.; Rendell, A.; Smola, A. | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5101 LNCS(PART 1), pp. 466–475 | 5 |
35 | SCP | 7 | 2011 | A review of artificial intelligence algorithms in document classification | Bilski, A. | International Journal of Electronics and Telecommunications | 5 |
36 | SCP | 18 | 2015 | An architecture for agile machine learning in real-time applications | Schleier-Smith, J. | Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining | 4 |
37 | SCP | 52 | 2018 | Machine learning in agriculture: A review | Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. | Sensors | 4 |
38 | SCP | 22 | 2016 | Application of Information Processes Applicative Modelling to Virtual Machines Auto Configuration | Zykov, S.; Shumsky, L. | Procedia Computer Science | 3 |
39 | SCP | 34 | 2017 | Geometry-aware principal component analysis for symmetric positive definite matrices | Horev, I.; Yger, F.; Sugiyama, M. | Machine Learning | 3 |
40 | SCP | 17 | 2015 | A Fuzzy Least Squares Support Tensor Machines in Machine Learning | Zhang, R.; Zhou, Z. | International Journal of Emerging Technologies in Learning | 2 |
41 | SCP | 36 | 2017 | Nuclear energy system’s behavior and decision making using machine learning | Gomez Fernandez, M.; Tokuhiro, A.; Welter, K.; Wu, Q. | Nuclear Engineering and Design | 2 |
42 | SCP | 9 | 2013 | Application study of machine learning in lightning forecasting | Qiu, T.; Zhang, S.; Zhou, H.; Bai, X.; Liu, P. | Information Technology Journal | 1 |
43 | SCP | 30 | 2016 | WOWMON: A machine learning-based profiler for self-adaptive instrumentation of scientific workflows | Zhang, X.; Abbasi, H.; Huck, K.; Malony, A.D. | Procedia Computer Science | 1 |
44 | SCP | 31 | 2017 | An event search platform using machine learning | Rodrigues, M.A.; Silva, R.R.; Bernardino, J. | Proceedings of the International Conference on Software Engineering and Knowledge Engineering, SEKE | 1 |
45 | SCP | 32 | 2017 | Automated business process management-in times of digital transformation using machine learning or artificial intelligence | Paschek, D.; Luminosu, C.T.; Draghici, A. | MATEC Web of Conferences | 1 |
46 | SCP | 42 | 2018 | Application of machine learning methods in big data analytics at management of contracts in the construction industry | Valpeters, M.; Kireev, I.; Ivanov, N. | MATEC Web of Conferences | 1 |
47 | SCP | 48 | 2018 | Data mining and machine learning in textile industry | Yildirim, P.; Birant, D.; Alpyildiz, T. | Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery | 1 |
48 | WoS | 72 | 2018 | Big Data Analytics, Machine Learning, and Artificial Intelligence in Next-Generation Wireless Networks | Kibria, M.G.; Kien, N.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. | Ieee Access | 1 |
49 | WoS | 73 | 2017 | Quantum neuromorphic hardware for quantum artificial intelligence | Prati, E. | 8th International Workshop Dice2016: Spacetime - Matter - Quantum Mechanics | 1 |
50 | WoS | 74 | 2015 | Exploiting Computational intelligence Paradigms in e-Technologies and Activities | Said, H.M.; Salem, A.M. | International Conference on Communications, Management, and Information Technology (Iccmit’2015) | 1 |
51 | WoS | 75 | 2012 | Sentiment Analysis of Products Using Web | Unnamalai, K. | International Conference on Modelling Optimization and Computing | 1 |
52 | SCP | 8 | 2012 | Taxonomy development and its impact on a self-learning e-recruitment system | Faliagka, E.; Karydis, I.; Rigou, M.; (…); Tsakalidis, A.; Tzimas, G. | IFIP Advances in Information and Communication Technology | 0 |
53 | SCP | 13 | 2013 | Research on adaptive multi-filtering model of network sensitive information | Cao, X.F.; Kang, W.; Shi, Q.; Shi, F.F. | Information Technology Journal | 0 |
54 | SCP | 15 | 2014 | Grade: Machine-learning support for graduate admissions | Waters, A.; Miikkulainen, R. | AI Magazine | 0 |
55 | SCP | 27 | 2016 | Leveraging linked open data information extraction for data mining applications | Mahule, R.; Vyas, O.P. | Turkish Journal of Electrical Engineering and Computer Sciences | 0 |
56 | SCP | 38 | 2017 | Rapid prototyping IoT solutions based on Machine Learning | Rizzo, A.; Montefoschi, F.; Caporali, M.; (…); Burresi, G.; Giorgi, R. | ACM International Conference Proceeding Series | 0 |
57 | SCP | 39 | 2017 | Towards automatic learning of heuristics for mechanical transformations of procedural code | Vigueras, G.; Carro, M.; Tamarit, S.; Mariño, J. | Electronic Proceedings in Theoretical Computer Science, EPTCS | 0 |
58 | SCP | 41 | 2018 | Application of artificial intelligence principles in mechanical engineering | Zajačko, I.; Gál, T.; Ságová, Z.; Mateichyk, V.; Wiecek, D. | MATEC Web of Conferences | 0 |
59 | SCP | 44 | 2018 | Artificial Intelligence in Medical Applications | Chan, Y.K.; Chen, Y.F.; Pham, T.; Chang, W.; Hsieh, M.Y. | Journal of Healthcare Engineering | 0 |
60 | SCP | 45 | 2018 | A semantic internet of things framework using machine learning approach based on cloud computing | Ding, P.W.; Hsu, I.C. | ACM International Conference Proceeding Series | 0 |
61 | SCP | 46 | 2018 | A Survey on Machine Learning-Based Mobile Big Data Analysis: Challenges and Applications | Xie, J.; Song, Z.; Li, Y.; (…); Zhang, J.; Guo, J. | Wireless Communications and Mobile Computing | 0 |
62 | SCP | 47 | 2018 | Big Data and Machine Learning Based Secure Healthcare Framework | Kaur, P.; Sharma, M.; Mittal, M. | Procedia Computer Science | 0 |
63 | SCP | 49 | 2018 | Discovering discontinuity in big financial transaction data | Tuarob, S.; Strong, R.; Chandra, A.; Tucker, C.S. | ACM Transactions on Management Information Systems | 0 |
64 | SCP | 50 | 2018 | Introducing children to machine learning concepts through hands-on experience | Hitron, T.; Erel, H.; Wald, I.; Zuckerman, O. | IDC 2018 - Proceedings of the 2018 ACM Conference on Interaction Design and Children | 0 |
65 | SCP | 51 | 2018 | Machine learning for software engineering: Models, methods, and applications | Meinke, K.; Bennaceur, A. | Proceedings - International Conference on Software Engineering | 0 |
66 | SCP | 53 | 2018 | Machine Learning in IT Service Management | Zuev, D.; Kalistratov, A.; Zuev, A. | Procedia Computer Science | 0 |
67 | SCP | 54 | 2018 | Research and application of computer control system based on complex neural network | Yang, R. | MATEC Web of Conferences | 0 |
68 | SCP | 55 | 2018 | Text classification techniques: A literature review | Thangaraj, M.; Sivakami, M. | Interdisciplinary Journal of Information, Knowledge, and Management | 0 |
69 | SCP | 56 | 2019 | A Machine Learning Method for Predicting Driving Range of Battery Electric Vehicles | Sun, S.; Zhang, J.; Bi, J.; Wang, Y.; Moghaddam, M.H.Y. | Journal of Advanced Transportation | 0 |
70 | SCP | 57 | 2019 | An empirical comparison of machine-learning methods on bank client credit assessments | Munkhdalai, L.; Munkhdalai, T.; Namsrai, O.E.; Lee, J.Y.; Ryu, K.H. | Sustainability | 0 |
71 | SCP | 58 | 2019 | Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir | Niu, W.J.; Feng, Z.K.; Feng, B.F.; (…); Cheng, C.T.; Zhou, J.Z. | Water | 0 |
72 | SCP | 59 | 2019 | Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence | Partel, V.; Charan Kakarla, S.; Ampatzidis, Y. | Computers and Electronics in Agriculture | 0 |
73 | SCP | 60 | 2019 | Identifying known and unknown mobile application traffic using a multilevel classifier | Zhao, S.; Chen, S.; Sun, Y.; (…); Su, J.; Su, C. | Security and Communication Networks | 0 |
74 | SCP | 61 | 2019 | Optimized Clustering Algorithms for Large Wireless Sensor Networks: A Review | Wohwe Sambo, D.; Yenke, B.O.; Förster, A.; Dayang, P. | Sensors | 0 |
75 | WoS | 76 | 2019 | FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review | Shawahna, A.; Sait, S.M.; El-Maleh, A. | Ieee Access | 0 |
76 | WoS | 77 | 2018 | A quantum machine learning algorithm based on generative models | Gao, X.; Zhang, Z.Y.; Duan, L.M. | Science Advances | 0 |
77 | WoS | 78 | 2018 | Machine Learning for Network Automation: Overview, Architecture, and Applications | Rafique, D.; Velasco, L. | Journal of Optical Communications and Networking | 0 |
78 | WoS | 79 | 2018 | A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques | Chen, P.; Xie, Y.; Jin, P.; Zhang, D. | International Journal of Distributed Sensor Networks | 0 |
79 | WoS | 80 | 2017 | Nuclear energy system’s behavior and decision making using machine learning | Fernandez, M.G.; Tokuhiro, A.; Welter, K.; Wu, Q. | Nuclear Engineering and Design | 0 |
80 | WoS | 81 | 2017 | Automated business process management—In times of digital transformation using machine learning or artificial intelligence | Paschek, D.; Luminosu, C.T.; Draghici, A. | 8th International Conference on Manufacturing Science and Education (Mse 2017)—Trends in New Industrial Revolution | 0 |
81 | WoS | 82 | 2017 | The Evaluation of Resonance Frequency for Piezoelectric Transducers by Machine Learning Methods | Chang, F.M. | 27Th International Conference on Flexible Automation and Intelligent Manufacturing, Faim 2017 | 0 |
82 | WoS | 83 | 2017 | From Extraction to Generation of Design Information Paradigm Shift in Data Mining via Evolutionary Learning Classifier System | Chiba, K.; Nakata, M. | International Conference on Computational Science (Iccs 2017) | 0 |
References
- Gupta, N.A. Literature Survey on Artificial Intelligence. 2017. Available online: https://www.ijert.org/research/a-literature-survey-on-artificial-intelligence-IJERTCONV5IS19015.pdf (accessed on 7 January 2020).
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 2006, 27, 12. [Google Scholar]
- Moore, A. Carnegie Mellon Dean of Computer Science on the Future of AI. Available online: https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-dean-of-computer-science-on-the-future-of-ai/#3a283c652197 (accessed on 7 January 2020).
- Becker, A.; Bar-Yehuda, R.; Geiger, D. Randomised algorithms for the loop cutset problem. J. Artif. Intell. Res. 2000, 12, 219–234. [Google Scholar] [CrossRef]
- Singer, J.; Gent, I.P.; Smaill, A. Backbone fragility and the local search cost peak. J. Artif. Intell. Res. 2000, 12, 235–270. [Google Scholar] [CrossRef]
- Chen, X.; Van Beek, P. Conflict-directed backjumping revisited. J. Artif. Intell. Res. 2001, 14, 53–81. [Google Scholar] [CrossRef]
- Hong, J. Goal recognition through goal graph analysis. J. Artif. Intell. Res. 2001, 15, 1–30. [Google Scholar] [CrossRef]
- Stone, P.; Littman, M.L.; Singh, S.; Kearns, M. ATTAC-2000: An adaptive autonomous bidding agent. J. Artif. Intell. Res. 2000, 15, 189–206. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, X. Integrative data mining in systems biology: from text to network mining. Artif. Intell. Med. 2007, 41, 83–86. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Wu, Z.; Feng, Y. Integrative mining of traditional Chines medicine literature and MEDLINE for functional gene networks. Artif. Intell. Med. 2007, 41, 87–104. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Du, W.; Sun, F.; Wang, X.; Zhou, C.; Liang, Y. A multi-approaches-guided genetic algorithm with application to operon prediction. Artif. Intell. Med. 2007, 41, 151–159. [Google Scholar] [CrossRef]
- Halal, W.E. Artificial intelligence is almost here. Horizon 2003, 11, 37–38. Available online: https://www.emerald.com/insight/content/doi/10.1108/10748120310486771/full/html (accessed on 7 January 2020). [CrossRef]
- Masnikosa, V.P. The fundamental problem of an artificial intelligence realization. Kybernetes 1998, 27, 71–80. [Google Scholar] [CrossRef]
- Metaxiotis, K.; Ergazakis, K.; Samouilidis, E.; Psarras, J. Decision support through knowledge management: The role of the artificial intelligence. Inf. Manag. Comput. Secur. 2003, 11, 216–221. [Google Scholar] [CrossRef]
- Raynor, W.J. The international dictionary of artificial intelligence. Ref. Rev. 2000, 14, 1–380. [Google Scholar]
- Stefanuk, V.L.; Zhozhikashvili, A.V. Productions and rules in artificial intelligence. Kybernetes 2002, 31, 817–826. [Google Scholar] [CrossRef]
- Tay, D.P.H.; Ho, D.K.H. Artificial intelligence and the mass appraisal of residential apartments. J. Prop. Valuat. Invest. 1992, 10, 525–540. [Google Scholar] [CrossRef]
- Wongpinunwatana, N.; Ferguson, C.; Bowen, P. An experimental investigation of the effects of artificial intelligence systems on the training of novice auditors. Manag. Audit. J. 2000, 15, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Oke, S.A. A literature review on artificial intelligence. Int. J. Inf. Manag. Sci. 2008, 19, 535–570. [Google Scholar]
- Carvalho, T.P.; Soares, F.A.A.M.N.; Vita, R.; da Francisco, P.R.; Basto, J.P.; Alcalá, S.G.S. A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 2019, 1, 1–12. [Google Scholar] [CrossRef]
- Majorel Deutschland GmbH Artificial Intelligence and Sustainability. Available online: https://www.future-customer.com/artificial-intelligence-and-sustainability/ (accessed on 8 January 2020).
- Markham, I.S.; Mathieu, R.G.; Wray, B.A. Kanban setting through artificial intelligence: A comparative study of artificial neural networks and decision trees. Integr. Manuf. Syst. 2000, 11, 239–246. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews. Technical Report TR/SE-0401. 2004. Available online: https://pdfs.semanticscholar.org/2989/0a936639862f45cb9a987dd599dce9759bf5.pdf?_ga=2.7241591.47522378.1578382825-243572483.1578382825 (accessed on 7 January 2020).
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data—Evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- De Felice, F.; Petrillo, A.; Zomparelli, F. Prospective design of smart manufacturing: An Italian pilot case study. Manuf. Lett. 2018, 15, 81–85. [Google Scholar] [CrossRef]
- Larrañaga, P.; Calvo, B.; Santana, R.; Bielza, C.; Galdiano, J.; Inza, I.; Lozano, J.A.; Armañanzas, R.; Santafé, G.; Pérez, A.; et al. Machine Learning. in Bioinformatics. Brief. Bioinform. 2006, 7, 86–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Dutton, T. An Overview of National AI Strategies. Available online: http://www.jaist.ac.jp/~bao/AI/OtherAIstrategies/An%20Overview%20of%20National%20AI%20Strategies%20%E2%80%93%20Politics%20+%20AI%20%E2%80%93%20Medium.pdf (accessed on 8 January 2020).
- Pérez-Ortiz, M.; Jiménez-Fernández, S.; Gutiérrez, P.A.; Alexandre, E.; Hervás-Martínez, C.; Salcedo-Sanz, S. A Review of Classification Problems and Algorithms in Renewable Energy Applications. Energies 2016, 9, 607. [Google Scholar] [CrossRef]
- Lieber, D.; Stolpe, M.; Konrad, B.; Deuse, J.; Morik, K. Quality prediction in interlinked manufacturing processes based on supervised & unsupervised machine learning. Procedia CIRP 2013, 7, 193–198. [Google Scholar]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to Achieve the Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
Keywords | Time Period |
---|---|
Artificial Intelligence | 1999–2019 |
Machine Learning | |
Application |
Research Carried out on 2019 | ||
---|---|---|
Source of research | Scopus | Web of Science |
Results | 12,445 | 1081 |
Web of Science | Scopus | ||||
---|---|---|---|---|---|
Document Types | Records | Contribute % | Document Types | Records | Contribute % |
Article | 481 | 46.12 | Conference Paper | 7128 | 57.28 |
Proceedings paper | 447 | 42.86 | Article | 4212 | 33.85 |
Review | 133 | 12.76 | Review | 412 | 3.31 |
Editorial material | 16 | 1.53 | Article in Press | 194 | 1.56 |
Meeting abstract | 2 | 0.19 | Book Chapter | 177 | 1.42 |
Book chapter | 1 | 0.1 | Conference Review | 177 | 1.42 |
Retracted publication | 1 | 0.1 | Book | 90 | 0.72 |
- | - | - | Editorial | 27 | 0.22 |
- | - | - | Note | 10 | 0.08 |
- | - | - | Letter | 9 | 0.07 |
- | - | - | Short Survey | 9 | 0.07 |
Subject Area | ||||
---|---|---|---|---|
Scopus | Web of Science (WoS) | |||
Computer Science | Chemical Engineering | Computer Science Information Systems | Computer Science Artificial Intelligence | Automation Control Systems |
Engineering | Energy | Materials Science Multidisciplinary | Environmental Sciences | Environmental Studies |
Materials Science | Decision Science | Engineering Electrical Electronic | Computer Science Hardware Architecture | Operations Research Management Science |
Environmental Science | Business Management and accounting | Telecommunications | Industrial Relations Labor | Robotics |
Engineering Environmental | Engineering Manufacturing | Thermodynamics | ||
Engineering Industrial | Computer Science Theory Methods | Energy Fuels | ||
Engineering Civil | Engineering Mechanical | Computer Science Cybernetics | ||
Computer Science Software Engineering | Multidisciplinary Sciences |
Main Areas in Sustainable Manufacturing | Key Objective | AI/ML Applications |
---|---|---|
Supply Chain Management | Ready product available in the appropriate place at a specific time | Improves transparency, accelerates decision-making, and produces accurate demand forecasting |
Quality Control | Recognize the early signs of potential production failures within the shortest terms in order to save resources and sustain operational efficiency | Improves the response time and allows eliminating possible failures |
Predictive Maintenance | Detects possible production malfunctions that may cause product quality issues | Creates accurate forecasts as to when the machinery must be repaired |
Energy consumption | Recommendations that will strike a balance in energy use | Improves excessive use of certain materials, redundant production scrap waste, inefficient supply chain management, logistics, and unequal distribution of energy resources. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; De Felice, F. Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability 2020, 12, 492. https://doi.org/10.3390/su12020492
Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F. Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions. Sustainability. 2020; 12(2):492. https://doi.org/10.3390/su12020492
Chicago/Turabian StyleCioffi, Raffaele, Marta Travaglioni, Giuseppina Piscitelli, Antonella Petrillo, and Fabio De Felice. 2020. "Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions" Sustainability 12, no. 2: 492. https://doi.org/10.3390/su12020492