Ecosystem Service Multifunctionality: Decline and Recovery Pathways in the Amazon and Chocó Lowland Rainforests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Ecosystem Services Quantification
2.3.1. Provisioning Services
2.3.2. Regulating Services
2.3.3. Supporting Services
2.3.4. Biodiversity
2.4. Ecosystem Service Multifunctionality (M)
2.5. Statistical Analysis
3. Results
3.1. Ecosystem Services Synergies and Trade-Offs
3.2. The Provision of Ecosystem Services and Ecosystem Service Multifunctionality across the Land Use Transition Phases
4. Discussion
4.1. Ecosystem Services Synergies and Trade-Offs
4.2. Assessing the Decline of Ecosystem Services and Ecosystem Service Multifunctionality
4.3. Identifying the Potential Recovery of Ecosystem Services and Ecosystem Service Multifunctionality
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Cluster | PC 1 | PC 2 | n | |
---|---|---|---|---|
Cluster 1 = Chocó | 4.16 | −0.97 | 54 | A |
Cluster 2 = Central Amazon | –2.2 | 0.51 | 102 | B |
Wilks: p-value ≤ 0.0001 | ||||
Pillai: p-value ≤ 0.0001 | ||||
Lawley–Hotelling: p-value ≤ 0.0001 | ||||
Roy: p-value ≤ 0.0001 | ||||
Different letters (A and B) indicate significant difference from each other |
Region | TVP (m3 ha−1) | NTFP (# sp. plot−1) | AGC (Mg ha−1) | SOC (Mg ha−1) | N (%) | P (mg kg−1) | K (meq/100 mL) | D (index) | E (%) | M (index) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Old-growth forest | Central Amazon | 190.57 | 38.98 | 167.34 | 52.57 | 0.32 | 2.77 | 0.13 | 3.54 | 0.07 | 0.44 |
Chocó | 149.90 | 14.26 | 146.94 | 50.79 | 0.29 | 4.10 | 0.20 | 2.76 | 6.44 | 0.44 | |
Logged forest | Central Amazon | 113.30 | 35.55 | 113.30 | 48.19 | 0.32 | 2.25 | 0.13 | 3.46 | 0.16 | 0.37 |
Chocó | 75.94 | 15.01 | 102.51 | 43.13 | 0.26 | 3.39 | 0.27 | 2.81 | 3.94 | 0.36 | |
Successional forest | Central Amazon | 93.69 | 25.03 | 83.93 | 49.45 | 0.33 | 2.34 | 0.12 | 2.94 | 0.36 | 0.32 |
Chocó | 101.49 | 17.94 | 86.49 | 51.42 | 0.29 | 5.10 | 0.26 | 2.44 | 1.54 | 0.35 | |
Plantations | Central Amazon | 75.94 | - | 14.73 | 46.39 | 0.32 | 1.06 | 0.21 | - | - | 0.12 |
Chocó | 179.47 | - | 66.02 | 40.68 | 0.24 | 5.21 | 0.34 | - | - | 0.19 | |
Agroforestry systems | Central Amazon | 47.47 | 8.87 | 28.50 | 50.34 | 0.35 | 2.46 | 0.14 | 1.45 | 0.00 | 0.22 |
Chocó | 83.10 | 7.34 | 40.45 | 36.88 | 0.22 | 4.57 | 0.49 | 1.60 | 0.56 | 0.23 |
References
- Keenan, R.; Reams, G.; Achard, F.; De-Freitas, J.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020. Key Findings; Food andf Agriculture Organization of the United Nations: Rome, Italy, 2020; p. 15. [Google Scholar]
- Tovo, A.; Suweis, S.; Formentin, M.; Favretti, M.; Volkov, I.; Banavar, J.; Azaele, S.; Maritan, A. Upscaling species richness and abundances in tropical forests. Sci. Adv. 2017, 3, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, R.; Chan, K.; Daily, G.; Goldstein, J.; Kareiva, P. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Costanza, R.; d’-Arge, R.; De-Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253. [Google Scholar] [CrossRef]
- Wilson, S.; Schelhas, J.; Grau, H.; Nanni, A.; Sloan, S. Forest ecosystem-service transitions: The ecological dimensions of the forest transition. Ecol. Soc. 2017, 24, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation; University of Chicago Press: Chicago, IL, USA, 2014; pp. 1–429. [Google Scholar]
- MEA. Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; pp. 1–155. [Google Scholar]
- Bailey, S. Increasing connectivity in fragmented landscapes: An investigation of evidence for biodiversity gain in woodlands. For. Ecol. Manag. 2007, 238, 7–23. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.; Hector, A.; Hooper, D.; Huston, M.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- Ravindranath, N.; Ostwald, M. Carbon Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer: Berlin, Germany, 2008; p. 299. [Google Scholar]
- Asner, G.; Powell, G.; Mascaro, J.; Knapp, D.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; Secada, L.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Hansen, M.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.; Minnemeyer, S. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 2017, 3, e1600821. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.; Mittermeier, C.; Fonseca, G.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Marchese, C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015, 3, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Basthlott, W.; Hostert, A.; Kier, G.; Kuper, W.; Kreft, J.; Rafiqpoor, D.; Sommer, H. Geographic patterns of vascular plant divesity at continental to global scales. Erdkunde 2007, 61, 305–315. [Google Scholar] [CrossRef]
- Hososuma, N.; Herold, M.; De-Sy, V.; De-Fries, R.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 1–12. [Google Scholar]
- FAO. Global Forest Resources Assessment. Terms and Definitions FRA 2020; Working Paper Series; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; pp. 1–26. [Google Scholar]
- IPBES. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services; IPBES secretariat: Bonn, Germany, 2018; pp. 1–44. [Google Scholar]
- Sierra, R. Patrones Y Factores De Deforestación En El Ecuador Continental, 1990–2010. Y un Acercamiento a Los Próximos 10 Años. Conservación Internacional Ecuador Y Forest Trends; GeoIS: Quito, Ecuador, 2013; pp. 1–57. [Google Scholar]
- Wasserstrom, R.; Southgate, D. Deforestation, Agrarian Reform and Oil Development in Ecuador, 1964–1994. Nat. Resour. 2013, 4, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Fagua, C.; Baggio, J.; Ramsey, D. Drivers of forest cover changes in the Chocó-Darien Global Ecoregion of South America. Ecosphere 2019, 10, e02648. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.; Asner, G.; Heil, M.; Coe, M.; DeFries, R.; Gibbs, H.; Howard, E.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem good and services in the Amazon basin. Ecol. Soc. Am. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Lambin, E.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Bremer, L.; Farley, K. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, G.; Herold, M.; De-Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers; Lexeme Consulting: Vancouver, BC, Canada, 2012; pp. 1–47. [Google Scholar]
- Thompson, I.; Guariguata, M.; Okabe, K.; Bahamondez, C.; Nasi, R.; Heymell, V.; Sabogal, C. An operational framework for defining and monitoring forest degradation. Ecol. Soc. 2013, 18, 20. [Google Scholar] [CrossRef]
- Chazdon, R.; Uriarte, M. Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. Biotropica 2016, 48, 709–715. [Google Scholar] [CrossRef]
- Benz, P.; Chen, S.; Dang, S.; Dieter, M.; Labelle, E.; Liu, G.; Hou, L.; Mosandl, R.; Pretzsch, H.; Pukall, K.; et al. Multifunctionality of Forests: A White Paper on Challenges and Opportunities in China and Germany. Forests 2020, 11, 266. [Google Scholar] [CrossRef] [Green Version]
- Manning, P.; van-der-Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.; Mace, G.; Whittingham, M.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Hölting, L.; Beckmann, M.; Volk, M.; Cord, A. Multifunctionality assessments—More than assessing multiple ecosystem functions and services? A quantitative literature review. Ecol. Indic. 2019, 103, 226–235. [Google Scholar] [CrossRef]
- O’Farrell, P.; Anderson, P. Sustainable multifunctional landscapes: A review to implementation. Curr. Opin. Environ. Sustain. 2010, 2, 59–65. [Google Scholar] [CrossRef]
- Lovell, S.; Johnston, D. Creating multifunctional landscapes: How can the field of ecology inform the design of the landscape? Front. Ecol. Environ. 2009, 7, 212–220. [Google Scholar] [CrossRef]
- Mastrangelo, M.; Weyland, F.; Villarino, S.; Barral, M.; Nahuelhual, L.; Laterra, P. Concepts and methods for landscape multifunctionality and a unifying framework based on ecosystem services. Landsc. Ecol. 2014, 29, 345–358. [Google Scholar] [CrossRef]
- Dauber, E.; Fredericksen, T.; Pena, M. Sustainability of timber harvesting in Bolivian tropical forests. For. Ecol. Manag. 2005, 214, 294–304. [Google Scholar] [CrossRef]
- Sist, P.; Nascimiento, F. Sustainability of reduced-impact logging in the Eastern Amazon. For. Ecol. Manag. 2007, 243, 199–209. [Google Scholar] [CrossRef]
- Gerwing, J. Degradation of forest through logging and fire in the eastern Brazilian Amazon. For. Ecol. Manag. 2002, 157, 131–141. [Google Scholar] [CrossRef]
- Lara, A.; Little, C.; Urrutia, R.; McPhee, J.; Álvarez-Garretón, C.; Oyarzún, C.; Soto, D.; Donoso, P.; Nahuelhual, L.; Pino, M. Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For. Ecol. Manag. 2009, 258, 415–424. [Google Scholar] [CrossRef]
- Uriarte, M.; Yackulic, C.; Lim, Y.; Arce-Nazario, J. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 2011, 26, 1151–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertzky, M.; Ravilious, C.; Araujo-Navas, A.; Kapos, V.; Carrión, D.; Chíu, M.; Dickson, B. Carbon, Biodiversity and Ecosystem Services: Exploring Co-benefits; UNEP-WCMC: Cambridge, UK, 2010; pp. 1–19. [Google Scholar]
- Anderson-Teixeira, K.; Snyder, P.; Twine, T.; Cuadra, S.; Costa, M.; DeLucia, E. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Chang. 2012, 2, 177. [Google Scholar] [CrossRef]
- Pearson, T.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryatmojo, H.; Masamitsu, F.; Kosugi, K.; Mizuyama, T. Impact of selective logging and intensive line planting system on runoff and soil erosion in a Tropical Indonesia rainforest. In River Basin Management VI; Wessex Institute of Technology: Southampton, UK, 2011; pp. 288–300. [Google Scholar]
- Brancalion, P.H.; Cardozo, I.V.; Camatta, A.; Aronson, J.; Rodrigues, R. Cultural ecosystem services and popular perceptions of the benefits of an ecological restoration project in the Brazilian Atlantic Forest. Restor. Ecol. 2014, 22, 65–71. [Google Scholar] [CrossRef]
- Sutherland, I.; Gergel, S.; Bennett, E. Seeing the forest for its multiple ecosystem services: Indicators for cultural services in heterogeneous forests. Ecol. Indic. 2016, 71, 123–133. [Google Scholar] [CrossRef]
- Edwards, D.; Tobias, J.; Sheil, D.; Meijaard, E.; Laurance, W. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 2014, 29, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef] [Green Version]
- Silver, W.; Ostertag, R.; Lugo, A. The Potential for Carbon Sequestration Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands. Restor. Ecol. 2000, 8, 394–407. [Google Scholar] [CrossRef]
- Bauhus, J.; Pokorny, B.; van der Meer, P.; Kanowski, P.; Kanninen, M. Ecosystem Goods and Services from Plantation Forests; Routledge: Washington, DC, USA, 2010; pp. 1–253. [Google Scholar]
- Zeng, Y.; Gou, M.; Ouyang, S.; Chen, L.; Fang, X.; Zhao, L.; Li, J.; Peng, C.; Xiang, W. The impact of secondary forest restoration on multiple ecosystem services and their trade-offs. Ecol. Indic. 2019, 104, 248–258. [Google Scholar] [CrossRef]
- Clec’h, S.; Oszwald, J.; Decaens, T.; Desjardins, T.; Dufour, S.; Grimaldi, M.; Jegou, N.; Lavelle, P. Mapping multiple ecosystem services indicators: Toward an objective-oriented approach. Ecol. Indic. 2016, 69, 508–521. [Google Scholar] [CrossRef]
- Boley, J.; Drew, A.; Andrus, R. Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. For. Ecol. Manag. 2009, 257, 2254–2261. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment’s (FRA) definitions for forests. Planted Forest. Available online: http://www.fao.org/forestry/plantedforests/67504/en/ (accessed on 1 June 2020).
- Harrison, P.; Berry, P.; Simpson, G.; Haslett, J.; Blicharska, M.; Bucur, M.; Dunford, R.; Egoh, B.; Garcia-Llorente, M.; Geamănă, N.; et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosyst. Serv. 2014, 9, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.; Norris, K.; Fitter, A. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Balvanera, P.; Quijas, S.; Martín-López, B.; Barrios, E.; Dee, L.; Isbell, F.; Durance, I.; White, P.; Blanchard, R.; de Groot, R. The links between biodiversity and ecosystem services. In Routledge Handbook of Ecosystem Services; Routledge: Washington, DC, USA, 2016; pp. 45–61. [Google Scholar]
- Mouillot, D.; Villéger, S.; Scherer-Lorenzen, M.; Mason, N.W. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS ONE 2011, 6, e17476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuldt, A.; Assmann, T.; Brezzi, M.; Buscot, F.; Eichenberg, D.; Gutknecht, J.; Härdtle, W.; He, J.-S.; Klein, A.-M.; Kühn, P. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 2018, 9, 2989. [Google Scholar] [CrossRef] [Green Version]
- INAMHI. Anuario Metodologico del Ecuador; Instituto Nacional de Meteorología e Hidrología del Ecuador; MAE: Quito, Ecuador, 2015; pp. 1–134. [Google Scholar]
- Bravo, C.; Ramirez, A.; Haidee, M.; Torres, B.; Alemán, R.; Roldan, T.; Hnery, N.; Changoluisa, D. Factores asociados a la foertilidad del suelo en diferentes usos de la tierra en la Región Amazónica Ecuatoriana. Rev. Electron. Vet. 2017, 18, 1–16. [Google Scholar]
- MAE. Deforestación del Ecuador continental periodo 2014–2016; Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2017; pp. 1–37. [Google Scholar]
- MAE; FAO. Resultados de la Evaluación Nacional Forestal; MAE: Quito, Ecuador, 2014; pp. 1–316. [Google Scholar]
- Fick, S.; Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global areas. R. Meteorol. Soc. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics, 6th ed.; Pearson: Boston, MA, USA, 2013; pp. 1–983. [Google Scholar]
- Huberty, C.; Olejnik, S. Applied MANOVA and Discriminant Analysis, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 1–488. [Google Scholar]
- Killmann, W. Proceedings of the Expert Meeting on Harmonizing Forest-Related Definitions for Use by Various Stakeholders, Rome, Italy, 23–25 January 2002; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Bonilla-Bedoya, S.; Estrella-Bastidas, A.; Ordoñez, M.; Sanchez, A.; Herrera, M. Patterns of timber harvesting and its relationship with sustainable forest management in the western Amazon, Ecuador case. J. Sustain. For. 2017, 36, 433–453. [Google Scholar] [CrossRef]
- MAE. Las Normas Para el Manejo Forestal Sostenible de los Bosques Húmedo. Acuerdo N. 0125; Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2015. [Google Scholar]
- Brown, S.; Lugo, A. Tropical secondary forest. J. Trop. Ecol. 1990, 6, 1–32. [Google Scholar] [CrossRef]
- Torres, B.; Jadan, O.; Aguirre, P.; Hinojosa, L.; Günter, S. The contribution of traditional agroforestry to climate change adaptation in the Ecuadorian Amazon: The Chakra system. In Handbook of Climate Change Adaptation; Leal-Filho, W., Ed.; Springer-Verlag: Berlin, Germany, 2015; pp. 1973–1994. [Google Scholar]
- La-Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.; Liquete, C.; Egoh, B.; Geneletti, D.; Crossman, N. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Williams, A.; Hedlund, K. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Appl. Soil Ecol. 2013, 65, 1–7. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Mejia, E.; Pacheco, P. Forest Use and Timber Markets in the Ecuadorian Amazon. Occasional Paper 111; CIFOR: Bogor, Indonesia, 2014; p. 101. [Google Scholar]
- MAE. Procedimientos para Autorizar el Aprovechamiento y Corta de Madera. Acuerdo Ministerial 139; Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2010; pp. 1–33. [Google Scholar]
- Rodríguez, C.; Guillen, A.; Tercero, E. Factor de forma para la Tectona grandis LF, empresa MLR-Forestal, Siuna, Costa Caribe Norte de Nicaragua. Cienc. Intercult. 2017, 21, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Armijos, D. Construcción de Tablas Volumétricas y Cálculo de Factor de Forma (FF.) para dos especies, Teca (Tectona Grandis) y Melina (Gmelina arborea) en tres plantaciones de la Empresa Reybanpac CA en la provincia de Los Ríos. Bachelor´s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2013. [Google Scholar]
- Murillo, C. Tablas de Volumen y Porcentaje de Aprovechamiento en el Aserrado de Ochroma Pyramidale (BALSA) en el Recinto El Vergel, Cantón Valencia, Provincia de Los Ríos, año 2012; UTEQ: Quevedo, Spain, 2012. [Google Scholar]
- De la Torre, L.; Navarrete, H.; Muriel, P.; Macía, M.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador (Con Extracto de Datos); Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador, 2008; p. 955. [Google Scholar]
- Pérez, Á.; Hernández, C.; Romero-Saltos, H.; Valencia, R. Árboles Emblemáticos de Yasuní, Ecuador; Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2014. [Google Scholar]
- MAE. Propuesta Normativa: Lineamientos Técnicos Para el Manejo y Aprovechamiento Sostenible de Productos Forestales no Maderables (PFNM); MAE: Quito, Ecuador, 2018; pp. 1–13. [Google Scholar]
- IPCC. IPCC 5th Assessment Report "Climate Change 2013: The Physical Science Basis"; IPCC: Stockholm, Sweden, 2013. [Google Scholar]
- FAO. The State of Forests in the Amazon Basin, Congo Basin, and Southeast Asia. A Report Prepared for the Summit of the Three Rainforest Basins; FAO: Rome, Italy, 2011; pp. 1–80. [Google Scholar]
- Chave, J.; Rejou-Mechain, M.; Burquez, A.; Chidumayo, E.; Colgan, M.; Delitti, W.; Duque, A.; Eid, T.; Fearnside, P.; Goodman, R.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Chave, J.; Coomes, D.A.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Data from: Towards a Worldwide Wood Economics Spectrum; Dryad: Durham, CA, USA, 2009. [Google Scholar]
- Chave, J.; Coomes, D.A.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- MAE. Propiedades Anatómicas, Físicas y Mecanicas de 93 Especies Forestales; Ministerios del Ambiente del Ecuador: Quito, Ecuador, 2014; p. 169. [Google Scholar]
- Aguirre, Z.; Loja, A.; Solano, C.; Aguirre, N. Especies Forestales Más Aprovechadas en la Región Sur del Ecuador; Universidad Nacional de Loja: Loja, Ecuador, 2015; pp. 1–80. [Google Scholar]
- Goodman, R.; Phillips, O.; Castillo, D.; Freitas, L.; Tapia, S.; Monteagudo, A.; Baker, T. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Jadan, O.; Torres, B.; Gunter, S. Influencia del uso de la tierra sobre almacenamiento de carbono en sistemas productivos y bosque primario en Napo, Reserva de Biosfera Sumaco, Ecuador. Rev. Amaz. Cienc. Tecnol. 2012, 1, 173–186. [Google Scholar]
- Ordóñez, L.; Gavilánez, C.; Salazar, A. Secuestro de Carbono en Biomasa Aérea en Sistemas Agroforestales de Cacao y Café Ubicados en la Reserva de Biosfera Sumaco. Estudio Técnico; GIZ: Quito, Ecuador, 2011; p. 32. [Google Scholar]
- Anacafe (Asociación Nacional del Café en Guatemala). Propuesta Metodologica para la Evaluación de Servicios Ambientales; Anacafe (Asociación Nacional del Café en Guatemala): Guatemala, Guatemala, 2008. [Google Scholar]
- Douterlungne, D.; Herrera-Gorocica, A.; Ferguson, B.; Siddique, I.; Soto-Pinto, L. Allometric equations used to estimate biomass and carbon in four neotropical tree species with restoration potential. Agrociencia 2013, 47, 385–397. [Google Scholar]
- Perez-Cordero, L.; Kanninen, M. Aboveground biomass of Tectona grandis platantions in Costa Rica. J. Trop. For. Sci. 2003, 15, 199–213. [Google Scholar]
- Pearson, T.; Walker, S.; Brown, S. Sourcebook for Land Use, Land-use Change and Forest Projects; World Bank: Washington, DC, USA, 2005; p. 57. [Google Scholar]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Schoenholtz, S.H.; Van-Miegroet, H.; Burger, J. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Wall, D.; Bardgett, R.; Behan-Pelletier, V.; Herrick, J.; Jones, H.; Ritz, K.; Six, J.; Strong, D.; van-der-Putten, W. Soil Ecology and Ecosystem Services; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Aragão, L.; Malhi, Y.; Metcalfe, D.; Silva-Espejo, J.; Jiménez, E.; Navarrete, D.; Almeida, S.; Costa, A.; Salinas, N.; Phillips, O.; et al. Above-and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 2009, 6, 2759–2778. [Google Scholar] [CrossRef] [Green Version]
- Survey, S.S. Kellogg Soil Survey Laboratory Methods Manual; Report No. ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014; pp. 1–1030. [Google Scholar]
- Olsen, S.C.; Watanabe, F.; Dean, L. Estimation of available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA: Washington, DC, USA, 1954; Volume 939. [Google Scholar]
- Cardinale, B.; Matulich, K.; Hooper, D.; Byrnes, J.; Duffy, E.; Gamfeldt, L.; Balvanera, P.; O’connor, M.; Gonzalez, A. The functional role of producer diversity in ecosystems. Am. J. Bot. 2011, 98, 572–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, K.; Leemans, R.; Kumar, P.; Simons, H. Ecosystems and Human Well-Being: Policy Responses; Island Press: Washington, DC, USA, 2005; Volume 3. [Google Scholar]
- Quijas, S.; Schmid, B.; Balvanera, P. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic Appl. Ecol. 2010, 11, 582–593. [Google Scholar] [CrossRef] [Green Version]
- Magurran, A.; McGill, B. Biological Diversity: Frontiers in Measurement and Assessment; OUP: Oxford, UK, 2011; pp. 1–151. [Google Scholar]
- Magurran, A. Ecological Divertsity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Ferris, R.; Humphrey, J. A review of potential biodiversity indicators for application in British forests. Forestry 1999, 72, 313–328. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Perez, G.; Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 2016, 94, 94–106. [Google Scholar] [CrossRef]
- Dinnage, R.; Cadotte, M.; Haddad, N.; Crutsinger, G.; Tilman, D. Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol. Lett. 2012, 15, 1308–1317. [Google Scholar] [CrossRef]
- Scherber, C.; Eisenhauer, N.; Weisser, W.; Schmid, B.; Voigt, W.; Fischer, M.; Schulze, E.; Roscher, C.; Weigelt, A. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Van Ruijven, J. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Hooper, D.; Chapin, F.; Ewel, J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.; Lodge, D.; Loreau, M.; Naeem, S. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Beech, E.; Rivers, M.; Oldfield, S.; Smith, P. GlobalTreeSearch: The first complete global database of tree species and country distributions. J. Sustain. For. 2017, 36, 454–489. [Google Scholar] [CrossRef]
- Mutke, J.; Barthlott, W. Patterns of vascular plant diversity at continental to global scales. Biol. Skr. 2005, 55, 521–531. [Google Scholar]
- Hobohm, C. Endemism in Vascular Plants; Springer: Flensburg, Germany, 2014. [Google Scholar]
- León-Yánez, S.; Velencia, R.; Pitman, N.; Endara, L.; Ulloa, C.; Navarrete, H. Libro Rojo de las Plantas Endémicas del Ecuador, 2nd ed.; Herbario QCA, Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2012. [Google Scholar]
- Maestre, F.; Quero, J.; Gotelli, N.; Escudero, A.; Ochoa, V.; Delgado-Baquerizo, M.; García-Gómez, M.; Bowker, M.; Soliveres, S.; Escolar, C. Plant species richness and ecosystem multifunctionality in global drylands. Science 2012, 335, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Vitousek, P. Effects of Plant Composition and Diversity on Nutrient Cycling. Ecol. Monogr. 1998, 68, 121–149. [Google Scholar] [CrossRef]
- Stürck, J.; Verburg, P. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landsc. Ecol. 2017, 32, 481–500. [Google Scholar] [CrossRef] [Green Version]
- Finney, D.; Kaye, J. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 2017, 54, 509–517. [Google Scholar] [CrossRef]
- Fanin, N.; Gundale, M.; Farrell, M.; Ciobanu, M.; Baldock, J.; Nilsson, M.-C.; Kardol, P.; Wardle, D. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2018, 2, 269–278. [Google Scholar] [CrossRef]
- Gross, N.; Le Bagousse-Pinguet, Y.; Liancourt, P.; Berdugo, M.; Gotelli, N.; Maestre, F. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 2017, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tresch, S.; Frey, D.; Bayon, R.; Mäder, P.; Stehle, B.; Fliessbach, A.; Moretti, M. Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality. Sci. Rep. 2019, 9, 9769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Loinaz, G.; Alday, J.; Onaindia, M. Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. J. Environ. Manag. 2015, 147, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, J. Introductory Econometrics: A Modern Approach; Nelson Education: Natorp Boulevard Mason, OH, USA, 2016; p. 900. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R.; Tatham, R. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; Volume 6. [Google Scholar]
- Midi, H.; Bagheri, A. Robust multicollinearity diagnostic measure in collinear data set. In Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modeling. World Scientific and Engineering Academy and Society (WSEAS), Selangor, Malaysia, 22 July 2010; pp. 138–142. [Google Scholar]
- Wright, J.; Yavitt, J.; Wurzburger, N.; Turner, B.; Tanner, E.; Sayer, E.; Santiago, L.; Kaspari, M.; Hedin, L.; Harms, K. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 2011, 92, 1616–1625. [Google Scholar] [CrossRef]
- Austin, A.; Vitousek, P. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 1998, 113, 519–529. [Google Scholar] [CrossRef]
- Gardi, C.; Angelini, M.; Barceló, S.; Comerma, J.; Cruz Gaistardo, C.; Encina Rojas, A.; Jones, A.; Krasilnikov, P.; Mendonça Santos Brefin, M.; Montanarella, L. Atlas de suelos de América Latina y el Caribe, Comisión Europea; L-2995; Oficina de Publicaciones de la Unión Europea: Luxembourg, 2014; p. 176. [Google Scholar]
- Triviño, M.; Pohjanmies, T.; Mazziotta, A.; Juutinen, A.; Podkopaev, D.; Le Tortorec, E.; Mönkkönen, M. Optimizing management to enhance multifunctionality in a boreal forest landscape. J. Appl. Ecol. 2017, 54, 61–70. [Google Scholar] [CrossRef]
- Putz, F.; Zuidema, A.; Pinard, A.; Boot, G.; Sayer, A.; Sheil, D.; Vanclay, K. Improved Tropical Forest Management for Carbon Retention. PLoS Biol. 2008, 6, e166. [Google Scholar] [CrossRef] [Green Version]
- Bunker, D.; DeClerck, F.; Bradford, J.; Colwell, R.; Perfecto, I.; Phillips, O.; Sankaran, M.; Naeem, S. Species Loss and Aboveground Carbon Storage in a Tropical Forest. Science 2005, 310, 1029–1031. [Google Scholar] [CrossRef] [Green Version]
- Wartenberg, A.; Blaser, W.; Roshetko, J.; Van-Noordwijk, M.; Six, J. Soil fertility and Theobroma cacao growth and productivity under commonly intercropped shade-tree species in Sulawesi, Indonesia. Plant Soil 2020, 453, 87–104. [Google Scholar] [CrossRef]
- Montagnini, F. Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For. Ecol. Manag. 2000, 134, 257–270. [Google Scholar] [CrossRef]
- Caro, T. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship, and Other Surrogate Species; Island Press: Washington, DC, USA, 2010. [Google Scholar]
- Simberloff, D. Flagships, umbrellas, and keystones: Is single-species management passé in the landscape era? Biol. Conserv. 1998, 83, 247–257. [Google Scholar] [CrossRef]
- Siddig, A.; Ellison, A.; Ochs, A.; Villar-Leeman, C.; Lau, M. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. REDD + Safeguards. Available online: https://redd.unfccc.int/fact-sheets/safeguards.html (accessed on 3 May 2020).
- Roopsind, A.; Wortel, V.; Hanoeman, W.; Putz, F. Quantifying uncertainty about forest recovery 32-years after selective logging in Suriname. For. Ecol. Manag. 2017, 391, 246–255. [Google Scholar] [CrossRef]
- Rutishauser, E.; Hérault, B.; Baraloto, C.; Blanc, L.; Descroix, L.; Sotta, E.D.; Ferreira, J.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015, 25, R787–R788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, T.; Vidal, E.; Putz, F. Forest biomass recovery after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 2014, 314, 59–63. [Google Scholar] [CrossRef]
- Huang, M.; Asner, G. Long-term carbon loss and recovery following selective logging in Amazon forests. Glob. Biogeochem. Cycles 2010, 24, 1–15. [Google Scholar] [CrossRef]
- Putz, F.E.; Zuidema, P.; Synnott, T.; Peña-Claros, M.; Pinard, M.; Sheil, D.; Vanclay, J.; Sist, P.; Gourlet-Fleury, S.; Griscom, B. Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conserv. Lett. 2012, 5, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Vidal, E.; West, T.; Putz, F. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 2016, 376, 1–8. [Google Scholar] [CrossRef]
- Rist, L.; Shanley, P.; Sunderland, T.; Sheil, D.; Ndoye, O.; Liswanti, N.; Tieguhong, J. The impacts of selective logging on non-timber forest products of livelihood importance. For. Ecol. Manag. 2011, 268, 57–69. [Google Scholar] [CrossRef]
- Bongers, F.; Poorter, L.; Hawthorne, W.; Sheil, D. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecol. Lett. 2009, 12, 798–805. [Google Scholar] [CrossRef]
- Connell, J. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molino, J.-F.; Sabatier, D. Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis. Science 2001, 294, 1702–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, W.; Lima, O.; Quintiliano, F.; Higuchi, N.; Ferreira, J. Logging activity and tree regeneration in an Amazonian forest. For. Ecol. Manag. 1999, 113, 67–74. [Google Scholar] [CrossRef]
- Verburg, R.; Van-Eijk-Bos, C. Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rain forest. J. Veg. Sci. 2003, 14, 99–110. [Google Scholar] [CrossRef]
- Martinelli, L.; Almeida, S.; Brown, I.; Moreira, M.; Victoria, R.; Filoso, S.; Ferreira, C.; Thomas, W. Variation in Nutrient Distribution and Potential Nutrient Losses by Selective Logging in a Humid Tropical Forest of Rondonia, Brazil 1. Biotropica 2000, 32, 597–613. [Google Scholar] [CrossRef]
- Dam, O. Forest Filled with Gaps: Effects of Gap Size on Water and Nutrient Cycling in Tropical Rain Forest: A Study in Guyana; Universiteit Utrecht: Utrecht, The Netherlands, 2001. [Google Scholar]
- Olander, L.; Bustamante, M.; Asner, G.; Telles, E.; Prado, Z.; Camargo, P. Surface soil changes following selective logging in an eastern Amazon forest. Earth Interact. 2005, 9, 1–19. [Google Scholar] [CrossRef]
- McNabb, K.; Miller, M.; Lockaby, B.; Stokes, B.; Clawson, R.; Stanturf, J.A.; Silva, J. Selection harvests in Amazonian rainforests: Long-term impacts on soil properties. For. Ecol. Manag. 1997, 93, 153–160. [Google Scholar] [CrossRef]
- Chazdon, R.; Finegan, B.; Capers, R.; Salgado-Negret, B.; Casanoves, F.; Boukili, V.; Norden, N. Composition and Dynamics of Functional Groups of Trees During Tropical Forest Succession in Northeastern Costa Rica. Biotropica 2010, 42, 31–40. [Google Scholar] [CrossRef]
- Martin, P.; Newton, A.; Bullock, J. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132236. [Google Scholar] [CrossRef]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murty, D.; Kirschbaum, M.; Mcmurtrie, R.; Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Marquez, O.; Hemadez, R.; Torres, A.; Franco, W. Changes in the physicochemical properties of soils in a chronosequence of Tectona grandis plantation. Turrialba 1993, 43, 37–41. [Google Scholar]
- Ferrari, A.; Wall, L. Utilización de árboles fijadores de nitrógeno para la revegetación de suelos degradados. Rev. Fac. Agron. 2004, 105, 2004. [Google Scholar]
- Lojka, B.; Preininger, D.; Van-Damme, P.; Rollo, A.; Banout, J. Use of the Amazonian tree species Inga edulis for soil regeneration and weed control. J. Trop. For. Sci. 2012, 24, 89–101. [Google Scholar]
- Montagnini, F.; Jordan, C. Tropical Forest Ecology. The Basis for Conservation and Management; The Netherlands; Springer: Berlin, Germany, 2005; p. 281. [Google Scholar]
- Fernández-Moya, J.; Alvarado, A.; San-Miguel-Ayanz, A.; Marchamalo-Sacristán, M. Forest nutrition and fertilization in teak (Tectona grandis Lf) plantations in Central America. N. Z. J. For. Sci. 2014, 44, S6. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, T.; Zhunusova, E.; Günter, S.; Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter? For. Policy Econ. 2020, 111, 102034. [Google Scholar] [CrossRef]
Central Amazon (# Plots) | Chocó (# Plots) | |
---|---|---|
Old-growth forest | 24 1 | 12 2 |
Logged forest | 24 | 9 |
Successional forest | 24 | 12 |
Agroforestry systems | 24 | 12 |
Plantation | 6 | 9 |
Total | 156 plots |
Ecosystem Service | Indicator |
---|---|
Provisioning services | Timber volume potential (TVP, m3 ha−1) Non-timber forest products (NTFP, # of species per plot) |
Regulating services | Above-ground carbon stocks (AGC, Mg ha−1) Soil carbon stocks (SOC, Mg ha−1) |
Supporting services | Nitrogen in soil (N, %) Phosphorus in soil (P, mg kg−1) Potassium in soil (K, meq/100 mL) |
Biodiversity | Tree and palm diversity (D, per plot) Endemism (E, % per plot) |
Ecosystem Services Indicator | p-Value | R2 | n |
---|---|---|---|
Ecosystem service multifunctionality—M | <0.0001 | 0.82 | 152 |
Timber volume potential—ln TVP (m3 ha−1) | <0.0001 | 0.33 | 140 |
Non-timber forest product—NTFP (# sp. per plot) | <0.0001 | 0.86 | 141 |
Above-ground carbon stocks—ln AGC (Mg ha−1) | <0.0001 | 0.81 | 153 |
Soil carbon stocks—SOC (Mg ha−1) | 0.0187 | 0.52 | 156 |
Nitrogen—N (%) | 0.2686 | 0.82 | 148 |
Phosphorus—ln P (mg kg−1) | 0.0093 | 0.61 | 156 |
Potassium—ln K (meq/100 mL) | <0.0001 | 0.68 | 153 |
Diversity—D (Shannon index) | <0.0001 | 0.78 | 141 |
Endemism—E (% sp. per plot) | <0.0001 | - | 141 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eguiguren, P.; Ojeda Luna, T.; Torres, B.; Lippe, M.; Günter, S. Ecosystem Service Multifunctionality: Decline and Recovery Pathways in the Amazon and Chocó Lowland Rainforests. Sustainability 2020, 12, 7786. https://doi.org/10.3390/su12187786
Eguiguren P, Ojeda Luna T, Torres B, Lippe M, Günter S. Ecosystem Service Multifunctionality: Decline and Recovery Pathways in the Amazon and Chocó Lowland Rainforests. Sustainability. 2020; 12(18):7786. https://doi.org/10.3390/su12187786
Chicago/Turabian StyleEguiguren, Paul, Tatiana Ojeda Luna, Bolier Torres, Melvin Lippe, and Sven Günter. 2020. "Ecosystem Service Multifunctionality: Decline and Recovery Pathways in the Amazon and Chocó Lowland Rainforests" Sustainability 12, no. 18: 7786. https://doi.org/10.3390/su12187786
APA StyleEguiguren, P., Ojeda Luna, T., Torres, B., Lippe, M., & Günter, S. (2020). Ecosystem Service Multifunctionality: Decline and Recovery Pathways in the Amazon and Chocó Lowland Rainforests. Sustainability, 12(18), 7786. https://doi.org/10.3390/su12187786