Influence of ICTs on Math Teaching–Learning Processes and Their Connection to the Digital Gender Gap
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variables Involved In the Study
- The working method, which took two values: S (UD-TIC) and N (traditional UD).
- Gender (GEN), which took two values: male (H) and female (M).
- The academic achievement of students in the posttest (POS) and the pretest (PRE). A new variable named amelioration (MEJ) was defined to estimate each participant’s progress between the mark achieved in the posttest and the mark reached in the pretest.
2.2. Population and Sample
2.3. Measurement of Dependent Variables. Instruments Collected Data
2.4. Test Reliability Analysis
2.5. Educational Intervention
2.6. Description of the UD-TIC (Triangles)
3. Results
3.1. Descriptive Analysis
- (a)
- Women, in the pretest, obtain an average of 0.754 points more than men, with a greater dispersion and a median of 1 point more than men.
- (b)
- In posttest, women have an average of 0.878 points more than men, with a higher dispersion and a median of 1.45 points more than men.
- (c)
- Women, in the variable amelioration, achieve an average of 0.124 points more than men, with a similar dispersion and a median of 0.1 points more than men.
- (d)
- The two genders improve after the application of the UD; however, the average improvement for women is higher by 0.124 points than that for men with a similar dispersion.
3.2. Inferential Analysis
4. Discussion
5. Conclusions
6. Limitations and Future Lines of Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Research with Human Participants
Informed Consent
References
- Delors, J. La Educación Encierra un Tesoro. Informe a la UNESCO de la Comisión Internacional Sobre la Educación Para el Siglo XXI; Santillana-UNESCO: Madrid, Spain, 1996. [Google Scholar]
- Palomares-Ruiz, A. Investigación y Respuestas Socioeducativas del Profesorado en el Siglo XXI; Síntesis: Madrid, Spain, 2020. [Google Scholar]
- UN General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 22 September 2019).
- Organization for Economic Cooperation and Development. The ABC of Gender Equality in Education: Aptitude, Behaviour, Confidence; OECD Publishing: Paris, France, 2015. [Google Scholar] [CrossRef] [Green Version]
- García-Holgado, A.; Camacho, A.; García-Peñalvo, F.J. La brecha de género en el sector STEM en América Latina: Una propuesta europea. In Actas del V Congreso Internacional Sobre Aprendizaje, Innovación y Competitividad; CINAIC, [online], Madrid, Spain, 9–11 October 2019; Sein-Echaluce, M.L., Fidalgo, A., García-Peñalvo, F.J., Eds.; Servicio de Publicaciones Universidad de Zaragoza: Zaragoza, Spain, 2019; pp. 704–709. [Google Scholar] [CrossRef] [Green Version]
- United Nations Educational, Scientific and Cultural. Cracking the Code: Girls’ and Women’s Education in Science, Technology, Engineering and Mathematics (STEM); UNESCO: Paris, France, 2017; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000253479 (accessed on 22 October 2019).
- Mateos, S.; Gómez, C. Libro Blanco de las Mujeres en el Ambito Tecnológico; Secretaría de Estado para el Avance Digital, Ministerio de Economía y Empresa: Madrid, Spain, 2019; Available online: https://www.mineco.gob.es/stfls/mineco/ministerio/ficheros/libreria/LibroBlancoFINAL.pdf (accessed on 22 October 2019).
- Huyer, S. Is the Gender Gap Narrowing in Science and Engineering? Unesco Science Report: Towards 2030; UNESCO Publishing: Paris, France, 2015. [Google Scholar]
- Unidad de Mujer y Ciencia de la Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación. Científicas en Cifras 2017. Estadísticas e Indicadores de la (Des)Igualdad de Género en la Formación y Profesión Científica; Ministerio de Ciencia, Innovación y Universidades: Madrid, Spain, 2018; Available online: https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHEROS/UMYC/Cientificas_cifras_2017.pdf (accessed on 5 November 2019).
- Zhou, L.; Li, F.; Wu, S.; Zhou, M. “School’s Out, But Class’s On”, The largest online education in the world today: Taking China’s Practical Exploration During The COVID-19 epidemic prevention and control as an example. Best Evid. Chin. Edu. 2020, 4, 501–519. [Google Scholar] [CrossRef]
- Sáinz, M.; López-Sáez, M. Gender differences in computer attitudes and the choice of technology-related occupations in a sample of secondary students in Spain. Comput. Educ. 2010, 54, 578–587. [Google Scholar] [CrossRef]
- Sanz, V. Women and computer engineering: The case of the school of computer science at the technical university of Madrid. Arbor 2008, 184, 905–915. [Google Scholar] [CrossRef] [Green Version]
- Burrelli, J. Thirty-Three Years of Women in S&E Faculty Positions. National Science Foundation Positions (NSF 08-308); National Science Foundation: Washington, DC, USA, 2008. [Google Scholar]
- Carlson, S. Wanted: Female computer scientists. Chron. High. Ed. 2006, 52, 35–38. [Google Scholar]
- Porter, L.V.; Sallot, L.M. The internet and public relations: Investigating practitioners’ roles and world wide web use. J. Mass Commun. Q. 2003, 80, 603–622. [Google Scholar] [CrossRef]
- Castaño, C.; González, A.M. La disparidad entre la participación y la posición de las mujeres en la investigación TIC: El caso del Plan Nacional de I+D+i. Revista Madri+ d 2008, 21, 118–126. [Google Scholar]
- Gil-Juárez, A.; Feliu, J.; González, A.V. Performatividad tecnológica de género: Explorando la brecha digital en el mundo del videojuego. Quad. Psicol. 2010, 12, 209–226. [Google Scholar] [CrossRef]
- Gil-Juárez, A.; Vitores, A.; Feliu, J.; Vall-Llovera, M. Brecha digital de género: Una revisión y una propuesta. Ed. Knowl. Soc. 2011, 12, 25–53. [Google Scholar] [CrossRef]
- Gil-Juárez, A.; Feliu, J.; Vitores, A. Género y TIC: En torno a la brecha digital de género. Athenea Digit. 2012, 12, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Kekelis, L.S.; Ancheta, R.W.; Heber, E. Hurdles in the pipeline: Girls and technology careers. Front. J. Women Stud. 2005, 26, 99–109. [Google Scholar] [CrossRef]
- Beavis, C.; Charles, C. Would the ‘real’ girl gamer please stand up? Gender, LAN cafés and the reformulation of the ‘girl’ gamer. Gend. Ed. 2007, 19, 691–705. [Google Scholar] [CrossRef]
- Margolis, J.; Fisher, A. Unlocking the Clubhouse. Women in Computing; MIT Press: Cambridge, UK, 2002. [Google Scholar]
- Royse, P.; Lee, J.; Undrahbuyan, B.; Hopson, M.; Consalvo, M. Women and games: Technologies of the gendered self. New Media Soc. 2007, 9, 555–576. [Google Scholar] [CrossRef]
- Schott, G.R.; Horrell, K.R. Girl gamers and their relationship with the gaming culture. Convergence 2000, 6, 36–53. [Google Scholar] [CrossRef]
- Thornham, H. “It’s a boy thing”: Gaming, gender and geeks. Fem. Media Stud. 2008, 8, 127–142. [Google Scholar] [CrossRef]
- Walkerdine, V. Playing the game: Young girls performing feminity in video game play. Fem. Media Stud. 2006, 6, 519–537. [Google Scholar] [CrossRef]
- Eurostat. Students Enrolled in Tertiary Education by Education Level, Programme Orientation, Sex and Field of Education. Available online: https://ec.europa.eu/eurostat/data/database?node_code=educ_uoe_enrt03 (accessed on 6 November 2019).
- Schimdt, W.H.; Tatto, M.T.; Bankov, K.; Blömeke, S.; Cedillo, T.; Cogan, L.; Han, S.; Houang, R.; Hsieh, F.J.; Paine, L.; et al. The Preparation Gap: Teacher Education for Middle School Mathematics in Six Countries; Center for Research in Mathematics and Science Education: Michigan, MI, USA, 2007. [Google Scholar]
- The Evaluation Tool at Google Docs. Available online: https://docs.google.com/forms/d/e/1FAIpQLSfLdi8hCrGoIUGKniMPUYNvT_QYZayEBnreMSRQo72y99psRg/viewform (accessed on 18 August 2020).
- Tatto, M.T. The Teacher Education and Development Study in Mathematics (TEDS-M): Policy, Practice, and Readiness to Teach Primary and Secondary Mathematics in 17 Countries; Technical Report; International Association for the Evaluation of Educational Achievement: Amsterdam, The Netherlands, 2013; TEDS-M Spain Is https://www.ugr.es/~tedsm/; Released Items Are Available online: http://www.ugr.es/~tedsm/resources/Informes/Result_Viejo/PrimariaItemsLiberados.pdf; (accessed on 18 August 2020). [Google Scholar]
- Ruiz, N. GeoGebra workshop for the initial teacher training in primary education. Int. J. Technol. Math. Educ. 2011, 18, 183–188. [Google Scholar]
- Corberán, R.; Gutiérrez, A.; Huerta, M.P.; Jaime, A.; Bautista, J.; Peñas, A.; Ruiz, E. Diseño y Evaluación de una Propuesta Curricular de Aprendizaje de la Geometría en Enseñanza Secundaria Basada en el Modelo de razonamiento de Van Hiele; Ministerio de Educación y Ciencia: Madrid, Spain, 1994. [Google Scholar]
- UD-TIC (Triangles). Available online: https://drive.google.com/file/d/1YtN0chJLq0fe3cv4EO9gtw376beuQ-Zu/view?usp=sharing (accessed on 18 August 2020).
- Bisquerra, R. Metodología de la Investigación Educativa; La Muralla: Madrid, Spain, 2004. [Google Scholar]
- Booth, S.; Goodman, S.; Kirkup, G. Gender Differences in Learning and Working with Technology: Social Constructs and Cultural Contexts; IGI Global: Hershey, PA, USA, 2010. [Google Scholar]
- Brynin, M. The Neutered Computer. In Computers, Phones and the Internet; Kraut, R., Brynin, M., Kiesler, S., Eds.; Oxford University Press US: Oxford, UK, 2006; pp. 84–96. [Google Scholar]
- Castaño, C. La Segunda Brecha Digital; Ediciones Càtedra: Madrid, Spain, 2008. [Google Scholar]
- Trauth, E.M.; Nielsen, S.H.; von Hellens, L.A. Explaining the IT gender gap: Australian stories for the new millennium. J. Res. Pract. Inf. Technol. 2003, 35, 7–20. [Google Scholar]
- Black, S.E.; Jameson, J.; Komoss, R.; Meehan, A.; Numerico, T. Women in computing: A European and international perspective. In Proceedings of the 3rd European Symposium on Gender & ICT: Working for Change, Manchester, UK, 1 February 2005. [Google Scholar]
- Turner, S.V.; Brent, P.W.; Pecora, N. Why Women Choose Information Technology Careers: Educational, Social, and Familial Influences; Annual Educational Research Association: New Orleans, WA, USA, 2002. [Google Scholar]
- Adya, M.; Kaiser, K.M. Early determinants of women in the IT workforce: A model of girls’ career choices. Inf. Technol. People 2005, 18, 230–259. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, M.K. Women in the information technology profession: A literature review, synthesis, and research agenda. Eur. J. Inf. Syst. 2002, 11, 20–34. [Google Scholar] [CrossRef]
- Beise, C.; Myers, M.; VanBrackle, L.; Chevli-Saroq, N. An examination of age, race, and sex as predictors of success in the first programming course. J. Inform. Educ. Res. 2003, 5, 51–64. [Google Scholar]
- Chinn, D.; Vandegrift, T. Gender and diversity in hiring software professionals: What do students say? In Proceedings of the Fourth International Workshop on Computing Education Research, ICER’08, Sidney, Australia, 6–7 September 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 39–50. [Google Scholar]
- Clegg, S.; Trayhurn, D. Gender and computing: Not the same old problem. Br. Educ. Res. J. 2000, 26, 75–89. [Google Scholar] [CrossRef]
- Cuny, J.; Aspray, W. Recruitment and Retention of Women Graduate Students in Computer Science and Engineering; Computing Research Association: Washington, DC, USA, 2000. [Google Scholar]
- Galpin, V. Women in computing around the world. ACM Sigcse Bull. 2002, 34, 94–100. [Google Scholar] [CrossRef]
- Hayes, E. Girls, gaming, and trajectories of technological expertise. In Beyond Barbie and Mortal Kombat: New Perspectives on Gender and Gaming; Kafai, Y., Heeter, C., Denner, J., Sun, J., Eds.; MIT Press: Cambridge, UK, 2008; pp. 217–229. [Google Scholar]
- Jenson, J.; De Castell, S. Her own boss: Gender and the pursuit of incompetent play. In Changing Views: Worlds in Play, Proceedings of Digital Games Research Association Conference, University of Vancouver, Vancouver, BC, Canada, 16–20 January 2005; University of Vancouver: Vancouver, BC, Canada, 2005. [Google Scholar]
- Roberts, D.F.; Foehr, U.G.; Rideout, V.J. Generation M: Media in the Lives of 8–18-Year Olds; Kaiser Family Foundation Study: Menlo Park, CA, USA, 2005. [Google Scholar]
- Jenson, J.; De Castell, S. Gender, simulation and gaming: Research review and redirections. Simul. Gaming 2010, 41, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, Y.; Liu, S. Online Learn-ing Promotes Teaching Model Reform. Chin. Edu. Dly. 2020, 2–22. Available online: http://www.chinadaily.com.cn/edu/index.html (accessed on 27 March 2020).
- Badia, A.; Meneses, J.; Sigalés, C. Percepción de los docentes sobre los factores que afectan al uso educativo de las TIC en el aula equipada de tecnología. Electron. J. Res. Educ. Psychol. 2013, 11, 787–808. [Google Scholar] [CrossRef] [Green Version]
- Guitert, M.; Romeu, T.; Pérez-Mateo, M. Competencias TIC y trabajo en equipo en entornos virtuales. RUSC 2007, 4, 1–12. [Google Scholar] [CrossRef]
- Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. The Sustainable Development Goals and COVID-19. Sustainable Development Report 2020; Cambridge University Press: Cambridge, UK, 2020; Available online: https://s3.amazonaws.com/sustainabledevelopment.report/2020/2020_sustainable_development_report.pdf (accessed on 12 August 2020).
- UN Economic and Social Council. Progress towards the Sustainable Development Goals. Report of the Secretary-General. 2020. Available online: https://unstats.un.org/sdgs/files/report/2020/secretary-general-sdg-report-2020--EN.pdf (accessed on 12 August 2020).
Acronym | 2013 | 2013 | 2014 | 2014 | 2015 | 2015 | 2016 | 2016 | 2017 | 2017 | 2018 | 2018 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spain | Male % | Female % | Male % | Female % | Male % | Female % | Male % | Female % | Male % | Female % | Males % | Females % | |
EDU | Education | 20.61 | 79.41 | 20.93 | 79.11 | 21.40 | 78.63 | 22.32 | 77.72 | 22.30 | 77.73 | 22.5 | 77.5 |
HaW | Health and Welfare | 27.94 | 72.13 | 28.41 | 71.64 | 28.94 | 71.11 | 29.04 | 71.02 | 28.73 | 71.30 | 28.3 | 71.7 |
SJI | Social Sciences, Journalism and Information | 38.32 | 61.72 | 38.44 | 61.62 | 38.34 | 61.70 | 38.52 | 61.52 | 38.40 | 61.64 | 38.1 | 61.9 |
AaH | Arts and Humanities | 40.90 | 59.11 | 41.42 | 58.64 | 41.63 | 58.41 | 41.90 | 58.12 | 42.21 | 57.80 | 42.2 | 57.8 |
BAL | Business, Administration and Law | 44.64 | 55.42 | 45.24 | 54.84 | 45.70 | 54.32 | 46.10 | 53.92 | 46.11 | 53.94 | 45.9 | 54.1 |
NMS | Natural Sciences, Mathematics and Statistics | 49.01 | 51.02 | 50.73 | 49.32 | 51.51 | 48.50 | 52.01 | 48.04 | 52.12 | 47.91 | 52.2 | 47.8 |
AFV | Agriculture, Forestry, Fisheries and Veterinary | 55.34 | 44.73 | 55.11 | 44.94 | 56.54 | 43.51 | 54.10 | 45.92 | 53.94 | 46.11 | 52.9 | 47.1 |
SER | Services | 53.30 | 46.70 | 53.43 | 46.62 | 53.62 | 46.41 | 53.71 | 46.33 | 54.24 | 45.82 | 54.8 | 45.2 |
EMC | Engineering, Manufacturing and Construction | 73.54 | 26.50 | 73.94 | 26.14 | 74.23 | 25.84 | 74.31 | 25.70 | 74.52 | 25.51 | 74.7 | 25.3 |
ICT | Information and Communication Technologies | 85.43 | 14.61 | 86.04 | 14.00 | 86.61 | 13.42 | 87.04 | 13.03 | 87.50 | 12.52 | 87.5 | 12.5 |
Group | Course | Population | Sample |
---|---|---|---|
Experimental | 1A | 24 | 52 |
1F | 28 | ||
Control | 1B | 24 | 71 |
1C | 24 | ||
1E | 23 | ||
Does not participate | 1D | 25 | |
TOTAL | 148 | 123 |
Cronbach’s Alpha in Pretest PRE | Cronbach’s Alpha at Posttest POS | ||||
---|---|---|---|---|---|
Case processing summary | Cases | N | % | N | % |
Valid | 123 | 100 | 123 | 100 | |
Excluded | 0 | 0 | 0 | 0 | |
Total | 123 | 100 | 123 | 100 | |
Reliability statistics | Cronbach Alpha | 0.77 | 0.87 | ||
Number of items | 25 | 25 |
GEN_F | Statistic | Standard Error | |||
---|---|---|---|---|---|
MEJ_D | Man | Mean | 1.584 | 0.0988 | |
95% confidence interval for the mean | Lower limit | 1.387 | |||
Upper limit | 1.781 | ||||
Mean trimmed to 5% | 1.553 | ||||
Median | 1.500 | ||||
Variance | 0.713 | ||||
Standard deviation | 0.8441 | ||||
Minimum | 0.0 | ||||
Maximum | 4.1 | ||||
Range | 4.1 | ||||
Interquartile range | 1.1 | ||||
Asymmetry | 0.531 | 0.281 | |||
Kurtosis | 0.914 | 0.555 | |||
Woman | Mean | 1.708 | 0.1414 | ||
95% confidence interval for the mean | Lower limit | 1.424 | |||
Upper limit | 1.992 | ||||
Mean trimmed to 5% | 1.673 | ||||
Median | 1.600 | ||||
Variance | 1.000 | ||||
Standard deviation | 1.0002 | ||||
Minimum | 0.0 | ||||
Maximum | 4.2 | ||||
Range | 4.2 | ||||
Interquartile range | 1.0 | ||||
Asymmetry | 0.456 | 0.337 | |||
Kurtosis | 0.297 | 0.662 |
MEJ_D = [−5,−4) | MEJ_D = [−4,−3) | MEJ_D = [−3,−2) | MEJ_D = [−2,−1) | MEJ_D = [−1,0) | MEJ_D = [0,1) | MEJ_D = [1,2) | MEJ_D = [2,3) | MEJ_D = [3,4) | MEJ_D = [4,5) | TOTAL | |
---|---|---|---|---|---|---|---|---|---|---|---|
GEN_F = Man | 0 | 0 | 0 | 0 | 0 | 15 | 38 | 15 | 4 | 1 | 73 |
GEN_F = Woman | 0 | 0 | 0 | 0 | 0 | 11 | 20 | 13 | 4 | 2 | 50 |
TOTAL | 0 | 0 | 0 | 0 | 0 | 26 | 58 | 28 | 8 | 3 | 123 |
Origin, | Dependent Variable | Type III Sum of Squares | gl | Quadratic Average | F | Sig, | Partial Eta Squared |
---|---|---|---|---|---|---|---|
Corrected Model | PRE_D | 22.570 a | 3 | 7.523 | 2.741 | 0.046 | 0.065 |
POS_D | 67.605 b | 3 | 22.535 | 4.23 | 0.007 | 0.096 | |
MEJ_D | 18.941 c | 3 | 6.314 | 9.181 | 0 | 0.188 | |
Intersection | PRE_D | 881.444 | 1 | 881.444 | 321.115 | 0 | 0.730 |
POS_D | 2312.048 | 1 | 2312.048 | 434.021 | 0 | 0.785 | |
MEJ_D | 338.363 | 1 | 338.363 | 492.025 | 0 | 0.805 | |
GEN_F | PRE_D | 17.86 | 1 | 17.86 | 6.507 | 0.012 | 0.017 |
POS_D | 27.402 | 1 | 27.402 | 5.144 | 0.025 | 0.066 | |
MEJ_D | 1.017 | 1 | 1.017 | 1.479 | 0.226 | 0.184 | |
TIC_F | PRE_D | 5.695 | 1 | 5.695 | 2.075 | 0.152 | 0.052 |
POS_D | 44.606 | 1 | 44.606 | 8.373 | 0.005 | 0.041 | |
MEJ_D | 18.424 | 1 | 18.424 | 26.791 | 0 | 0.012 | |
GEN_F * TIC_F | PRE_D | 0.308 | 1 | 0.308 | 0.112 | 0.738 | 0.001 |
POS_D | 2.709 | 1 | 2.709 | 0.508 | 0.477 | 0.004 | |
MEJ_D | 1.189 | 1 | 1.189 | 1.729 | 0.191 | 0.014 | |
Error | PRE_D | 326.649 | 119 | 2.745 | |||
POS_D | 633.919 | 119 | 5.327 | ||||
MEJ_D | 81.836 | 119 | 0.688 | ||||
Total | PRE_D | 1218.56 | 123 | ||||
POS_D | 2968.06 | 123 | |||||
MEJ_D | 429.24 | 123 | |||||
Corrected Total | PRE_D | 349.219 | 122 | ||||
POS_D | 701.523 | 122 | |||||
MEJ_D | 100.777 | 122 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomares-Ruiz, A.; Cebrián, A.; López-Parra, E.; García-Toledano, E. Influence of ICTs on Math Teaching–Learning Processes and Their Connection to the Digital Gender Gap. Sustainability 2020, 12, 6692. https://doi.org/10.3390/su12166692
Palomares-Ruiz A, Cebrián A, López-Parra E, García-Toledano E. Influence of ICTs on Math Teaching–Learning Processes and Their Connection to the Digital Gender Gap. Sustainability. 2020; 12(16):6692. https://doi.org/10.3390/su12166692
Chicago/Turabian StylePalomares-Ruiz, Ascensión, Antonio Cebrián, Emilio López-Parra, and Eduardo García-Toledano. 2020. "Influence of ICTs on Math Teaching–Learning Processes and Their Connection to the Digital Gender Gap" Sustainability 12, no. 16: 6692. https://doi.org/10.3390/su12166692
APA StylePalomares-Ruiz, A., Cebrián, A., López-Parra, E., & García-Toledano, E. (2020). Influence of ICTs on Math Teaching–Learning Processes and Their Connection to the Digital Gender Gap. Sustainability, 12(16), 6692. https://doi.org/10.3390/su12166692