Synthesis of Industrially Useful Phenolic Compounds Esters by Means of Biocatalysts Obtained Along with Waste Fish Oil Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Materials
2.3. Yeast Cultures, Biomass Yield, and Lipolytic Activity Measurements
2.4. Esters Synthesis
2.5. Gas Chromatography
2.6. Esters Purification
2.7. Evaluation of Antioxidant Activity
2.8. Evaluation of Antimicrobial Activity
2.9. Calculation of Selected Properties of Tested Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. Yeasts Cultivation and Biocatalyst Preparation
3.2. Biomass-Catalyzed Ester Synthesis
3.3. Evaluation of Antioxidant Activity of Obtained Esters and Their Precursors
3.4. Evaluation of Antimicrobial Activity of Obtained Esters and Their Precursors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Usydus, Z.; Szlinder-Richter, J. Functional properties of fish and fish products: A review. Int. J. Food Prop. 2012, 15, 823–846. [Google Scholar] [CrossRef]
- Zieniuk, B.; Fabiszewska, A. Ryby oraz odpady rybne jako źródło składników bioaktywnych oraz surowiec dla przemysłu energetycznego. Żywność Nauka Technologia Jakość 2018, 25, 5–16. [Google Scholar]
- Kraiem, T.; Hassen-Trabelsi, A.B.; Naoui, S.; Belayouni, H.; Jeguirim, M. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process. Fuel Process. Technol. 2015, 138, 404–412. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Tech. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Rasco, B.A. Fish protein hydrolysates: Production, biochemical, and functional properties. Crit. Rev. Food Sci. Nutr. 2000, 40, 43–81. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S.L. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Bücker, F.; Marder, M.; Peiter, M.R.; Lehn, D.N.; Esquedro, V.M.; de Almeida Pinto, L.A.; Konrad, O. Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew. Energy 2020, 147, 798–805. [Google Scholar] [CrossRef]
- Yahyaee, R.; Ghobadian, B.; Najafi, G. Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew. Sustain. Energy Rev. 2013, 17, 312–319. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; Metcalf & Eddy, International Edition: Boston, MA, USA, 2003. [Google Scholar]
- Yano, Y.; Oikawa, H.; Satomi, M. Reduction of lipids in fish meal prepared from fish waste by a yeast Yarrowia lipolytica. Int. J. Food Microbiol. 2008, 121, 302–307. [Google Scholar] [CrossRef]
- Aarthy, M.; Saravanan, P.; Ayyadurai, N.; Gowthaman, M.K.; Kamini, N.R. A two-step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. J. Mol. Catal. B Enzym. 2016, 125, 25–33. [Google Scholar] [CrossRef]
- Shinmen, Y.; Kawashima, H.; Shimizu, S.; Yamada, H. Concentration of eicosapentaenoic acid and docosahexaenoic acid in an arachidonic acid-producing fungus, Mortierella alpina 1S-4, grown with fish oil. Appl. Microbiol. Biotechnol. 1992, 38, 301–304. [Google Scholar] [CrossRef]
- Aoki, H.; Miyamoto, N.; Furuya, Y.; Mankura, M.; Endo, Y.; Fujimoto, K. Incorporation and accumulation of docosahexaenoic acid from the medium by Pichia methanolica HA-32. Biosci. Biotechnol. Biochem. 2002, 66, 2632–2638. [Google Scholar] [CrossRef]
- Kinoshita, H.; Ota, Y. Concentration of docosahexaenoic acid from fish oils using Geotrichum sp. FO347-2. Biosci. Biotechnol. Biochem. 2001, 65, 1022–1026. [Google Scholar] [CrossRef]
- Katre, G.; Joshi, C.; Khot, M.; Zinjarde, S.; RaviKumar, A. Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2012, 2, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurczak, P.; Zieniuk, B.; Fabiszewska, A.; Nowak, D.; Wołoszynowska, M.; Białecka-Florjańczyk, E. Utylizacja odpadów pochodzących z zakładów przemysłu spożywczego i paliwowego z wykorzystaniem lipolitycznych drożdży Yarrowia lipolytica. Zeszyty Problemowe Postępów Nauk Rolniczych 2017, 588, 15–24. [Google Scholar] [CrossRef]
- Zieniuk, B.; Fabiszewska, A. Yarrowia lipolytica: A beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: A minireview. World J. Microbiol. Biotechnol. 2019, 35, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fickers, P.; Marty, A.; Nicaud, J.M. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef]
- Sharma, S.; Kanwar, S.S. Organic solvent tolerant lipases and applications. Sci. World J. 2014, 2014, 625258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zieniuk, B.; Wołoszynowska, M.; Białecka-Florjańczyk, E. Enzymatic synthesis of biodiesel by direct transesterification of rapeseed cake. Int. J. Food Eng. 2020, 16, 3. [Google Scholar] [CrossRef]
- Białecka-Florjańczyk, E.; Fabiszewska, A.; Zieniuk, B. Phenolic acids derivatives-biotechnological methods of synthesis and bioactivity. Curr. Pharma. Biotechnol. 2018, 19, 1098–1113. [Google Scholar] [CrossRef]
- Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in human health. Int. J. Chem. Eng. Appl. 2014, 5, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman, J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 2014, 19, 19292–19349. [Google Scholar] [CrossRef] [PubMed]
- Roby, M.H.H. Synthesis and Characterization of Phenolic Lipids. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., del Rosario Garcia-Mateos, M., Eds.; IntechOpen: London, UK, 2017; pp. 89–116. [Google Scholar]
- Figueroa-Espinoza, M.C.; Villeneuve, P. Phenolic Acids Enzymatic Lipophilization. J. Agric. Food Chem. 2005, 53, 2779–2787. [Google Scholar] [CrossRef]
- Zieniuk, B.; Fabiszewska, A.; Białecka-Florjańczyk, E. Screening of solvents for favoring hydrolytic activity of Candida antarctica Lipase B. Bioproc. Biosyst. Eng. 2020, 43, 605–613. [Google Scholar] [CrossRef]
- Kapturowska, A.; Stolarzewicz, I.; Krzyczkowska, J.; Białecka-Florjańczyk, E. Studies on lipolytic activity of sonicated enzymes from Yarrowia lipolytica. Ultrason. Sonochem 2012, 19, 186–191. [Google Scholar] [CrossRef]
- Zanetti, M.; Carniel, T.K.; Valerio, A.; de Oliveira, J.V.; de Oliveira, D.; de Araujo, P.H.H.; Riella, H.G.; Fiori, M.A. Synthesis of geranyl cinnamate by lipase-catalyzed reaction and its evaluation as an antimicrobial agent. J. Chem. Technol. Biotechnol. 2017, 92, 115–121. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trend. Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- International Organization for Standards. ISO 20776–1. Clinical laboratory Testing and In Vitro Diagnostic Test Systems–Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices–Part 1: Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases; International Organization for Standards: Geneva, Switzerland, 2006. [Google Scholar]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J.; Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1 Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf (2017) (accessed on 28 June 2020).
- Fabiszewska, A.; Stolarzewicz, I.; Zamojska, W.; Białecka-Florjańczyk, E. Carbon source impact on Yarrowia lipolytica KKP 379 lipase production. Appl. Biochem. Microbiol. 2014, 50, 404–410. [Google Scholar] [CrossRef]
- Akpinar, O.; Ucar, F.B. Molecular characterization of Yarrowia lipolytica strains isolated from different environments and lipase profiling. Turk. J. Biol. 2013, 37, 249–258. [Google Scholar]
- Lopes, M.; Gomes, N.; Mota, M.; Belo, I. Yarrowia lipolytica growth under in-creased air pressure: Influence of enzyme production. Appl. Biochem. Biotechnol. 2009, 159, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, D.H.; Chen, N.; Zhi, G.Y. Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Bioresour. Technol. 2015, 198, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Jakovetić, S.M.; Jugović, B.Z.; Gvozdenović, M.M.; Bezbradica, D.I.; Antov, M.G.; Mijin, D.Z.; Knežević-Jugović, Z.D. Synthesis of aliphatic esters of cinnamic acid as potential lipophilic antioxidants catalyzed by lipase B from Candida antarctica. Appl. Biochem. Biotechnol. 2013, 170, 1560–1573. [Google Scholar] [CrossRef] [PubMed]
- Weber, H.K.; Stecher, H.; Faber, K. Sensitivity of microbial lipases to acetaldehyde formed by acyl-transfer reactions from vinyl esters. Biotechnol. Lett. 1995, 17, 803–808. [Google Scholar] [CrossRef]
- Weber, H.K.; Zuegg, J.; Faber, K.; Pleiss, J. Molecular reasons for lipase-sensitivity against acetaldehyde. J. Mol. Catal. B Enzym. 1997, 3, 131–138. [Google Scholar] [CrossRef]
- Weber, H.K.; Faber, K. Stabilization of lipases against deactivation by acetaldehyde formed in acyl transfer reactions. Method Enzymol. 1997, 286, 509–518. [Google Scholar]
- Guyot, B.; Bosqette, B.; Pina, M.; Graille, J. Esterification of phenolic acids from green coffee with an immobilized lipase from Candida antarctica in solvent-free medium. Biotechnol. Lett. 1997, 19, 529–532. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Bohm, V.; Schaich, K.M.; Ozyurek, M.; Guclu, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Reis, B.; Martins, M.; Barreto, B.; Milhazes, N.; Garrido, E.M.; Silva, P.; Garrido, J.; Borges, F. Structure-property-activity relationship of phenolic acids and derivatives. protocatechuic acid alkyl esters. J. Agric. Food Chem. 2010, 58, 6986–6993. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Zhou, H.T.; Hu, Y.H.; Tang, J.Y.; Su, M.X.; Guo, Y.J.; Chen, Q.X.; Liu, B. Antityrosinase and antimicrobial activities of 2-phenylethanol,2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 2011, 124, 298–302. [Google Scholar] [CrossRef]
- Sanchez-Maldonado, A.F.; Schieber, A.; Ganzle, M.G. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol. 2011, 111, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol. 2017, 8, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketchen, D.J.; Shook, C.L. The application of cluster analysis in strategic management research: An analysis and critique. Strateg. Manag. 1996, 17, 441–458. [Google Scholar] [CrossRef]
Compounds | Phenolic Compound Name/Derivative of | R1 | X |
---|---|---|---|
1, 8 | 2-Phenylethanol | –H | 2 |
2, 9 | Tyrosol | –OH | 2 |
3, 10 | 3-Phenyl-1-propanol | –H | 3 |
4, 11 | Phenylacetic acid | –H | 1 |
5, 12 | 4-Hydroxyphenylacetic acid | –OH | 1 |
6, 13 | 3-Phenylpropanoic acid | –H | 2 |
7, 14 | 3-(4-Hydroxyphenyl)propanoic acid | –OH | 2 |
Molecular Weight (g/mol) | cLogP | cLogS | H-Acceptors | H-Donors | Non-H Atoms | Electronegative Atoms | sp3-Atoms | Total Surface Area (Å) | Topological Polar Surface Area (Å) | |
---|---|---|---|---|---|---|---|---|---|---|
2PE (1) | 122.17 | 1.49 | −1.61 | 1 | 1 | 9 | 1 | 3 | 107.13 | 20.23 |
PEA (8) | 164.20 | 1.98 | −2.02 | 2 | 0 | 12 | 2 | 4 | 140.79 | 26.30 |
T (2) | 138.17 | 1.15 | −1.32 | 2 | 2 | 10 | 2 | 4 | 113.48 | 40.46 |
TA (9) | 180.20 | 1.63 | −1.73 | 3 | 1 | 13 | 3 | 5 | 147.14 | 46.53 |
3P1P (3) | 136.19 | 1.95 | −1.88 | 1 | 1 | 10 | 1 | 4 | 120.89 | 20.23 |
3P1PA (10) | 178.23 | 2.43 | −2.29 | 2 | 0 | 13 | 2 | 5 | 154.55 | 26.30 |
PA (4) | 136.15 | 1.14 | −1.59 | 2 | 1 | 10 | 2 | 2 | 111.12 | 37.30 |
EP (11) | 164.20 | 1.98 | −2.02 | 2 | 0 | 12 | 2 | 4 | 140.79 | 26.30 |
4HPAA (5) | 152.15 | 0.80 | −1.30 | 3 | 2 | 11 | 3 | 3 | 117.47 | 57.53 |
E4HPA (12) | 180.20 | 1.63 | −1.73 | 3 | 1 | 13 | 3 | 5 | 147.14 | 46.53 |
3PPA (6) | 150.18 | 1.60 | −1.86 | 2 | 1 | 11 | 2 | 3 | 124.88 | 37.30 |
E3PP (13) | 178.23 | 2.43 | −2.29 | 2 | 0 | 13 | 2 | 5 | 154.55 | 26.30 |
4HPPA (7) | 166.18 | 1.25 | −1.57 | 3 | 2 | 12 | 3 | 4 | 131.23 | 57.53 |
E4HPP (14) | 194.23 | 2.09 | −2.00 | 3 | 1 | 14 | 3 | 6 | 160.90 | 46.53 |
Culture Time (h) | Biomass Yield (g d.w./dm3) | Lipolytic Activity (U/g) | Residual Oil in Supernatant (g/dm3) |
---|---|---|---|
42 | 18.59 ± 0.32 | 53.41 ± 0.81 | 2.14 ± 0.11 |
Compound | Catalyst | |
---|---|---|
Y. lipolytica Biomass | Candida antarctica Lipase B | |
Conversion (%) | ||
Phenethyl acetate (8) | 32 (48) | 87 (90) |
Tyrosyl acetate (9) | 5 (27) | T * |
3-Phenyl-1-propyl acetate (10) | 28 (63) | 78 (90) |
Ethyl phenylacetate (11) | T | 68 (90) |
Ethyl 4-hydroxyphenylacetate (12) | T | 56 (60) |
Ethyl 3-phenylpropanoate (13) | 94 (95) | 97 (98) |
Ethyl 3-(4-hydroxyphenyl)propanoate (14) | 4 (4) | T |
Compound | Antioxidant Activity | ||
---|---|---|---|
DPPH• | CUPRAC | ||
IC50 (mg/mL) * | IC50 (mM) | TEAC ** | |
2-Phenylethanol (1) | 265 ± 3.2 H*** | 2172 ± 30 H | 0.023 ± 0.002 E |
Phenethyl acetate (8) | 119 ± 4.2 D | 726.2 ± 19 D | 0.021 ± 0.002 E |
Tyrosol (2) | 15.7 ± 0.3 A | 114.0 ± 1.8 A | 0.578 ± 0.003 B |
Tyrosyl acetate (9) | 20.4 ± 0.5 A | 113.0 ± 2.8 A | 0.456 ± 0.005 C |
3-Phenyl-1-propanol (3) | 389 ± 11J | 2858 ± 82 J | 0.021 ± 0.003 E |
3-Phenyl-1-propyl acetate (10) | 235 ± 1.5 G | 1324 ± 6.4 G | 0.020 ± 0.003 E |
Phenylacetic acid (4) | 325 ± 1.9 I | 2396 ± 12 I | 0.020 ± 0.003 E |
Ethyl phenylacetate (11) | 185 ± 5.5 F | 1126 ± 33 F | 0.019 ± 0.002 E |
4-Hydroxyphenylacetic acid (5) | 39.4 ± 1.2 BC | 258.9 ± 7.8 C | 0.638 ± 0.005 A |
Ethyl 4-hydroxyphenylacetate (12) | 44.5 ± 2.7 C | 247.2 ± 15 BC | 0.248 ± 0.003 D |
3-Phenylpropanoic acid (6) | 161 ± 8.2 E | 1075 ± 55 F | 0.020 ± 0.001 E |
Ethyl 3-phenylpropanoate (13) | 157 ± 9.0 E | 879.5 ± 50 E | 0.031 ± 0.001 E |
3-(4-hydroxyphenyl)propanoic acid (7) | 22.5 ± 0.7 AB | 135.7 ± 4.1 AB | 0.640 ± 0.008 A |
Ethyl 3-(4-hydroxyphenyl)propanoate (14) | 25.1 ± 0.5 AB | 129.3 ± 2.5 AB | 0.457 ± 0.015 C |
Molecular Weight | cLogP | cLogS | H-Acceptors | H-Donors | Non-H Atoms | Electronegative Atoms | sp3-Atoms | Total Surface Area | Topological Polar Surface Area | CUPRAC (TEAC) | DPPH• (ic50) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CUPRAC (TEAC) | 0.207 | −0.571 * | 0.641 * | 0.714 * | 0.796 * | 0.165 | 0.714 * | 0.196 | −0.031 | 0.867 * | 1.000 | −0.733 * |
DPPH• (IC50) | −0.632 * | 0.144 | −0.178 | −0.837 * | −0.293 | −0.605* | −0.837 * | −0.499 | −0.450 | −0.717 * | −0.733 * | 1.000 |
Microorganism | 2PE (1) | PEA (8) | T (2) | TA (9) | 3P1P (3) | 3P1PA (10) | PA (4) | EP (11) | 4HPAA (5) | E4HPA (12) | 3PPA (6) | E3PP (13) | 4HPPA (7) | E4HPP (14) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E. coli PCM 2057 | 5 (5) | 5 (>10) | 5 (10) | 2.5 (5) | 1.25 (2.5) | 10 (>10) | 2.5 (5) | 10 (10) | 2.5 (5) | 2.5 (5) | 2.5 (5) | 10 (10) | 2.5 (5) | 2.5 (2.5) |
S. marcescens PCM 549 | 2.5 (5) | 10 (>10) | 5 (10) | 2.5 (5) | 1.25 (2.5) | 10 (>10) | 2.5 (5) | 10 (10) | 2.5 (5) | 2.5 (2.5) | 2.5 (5) | 10 (>10) | 2.5 (5) | 2.5 (2.5) |
C. freundii PCM 1492 | 2.5 (5) | 5 (10) | 5 (5) | 1.25 (2.5) | 1.25 (2.5) | 2.5 (>10) | 1.25 (2.5) | 2.5 (10) | 2.5 (2.5) | 2.5 (2.5) | 2.5 (2.5) | 2.5 (10) | 2.5 (2.5) | 2.5 (2.5) |
K. pneumoniae PCM 1 | 2.5 (2.5) | 5 (10) | 5 (5) | 1.25 (2.5) | 1.25 (2.5) | 5 (>10) | 1.25 (2.5) | 2.5 (10) | 2.5 (5) | 5 (2.5) | 1.25 (2.5) | 2.5 (10) | 2.5 (2.5) | 1.25 (2.5) |
L. monocytogenes PCM 2191 | 5 (10) | 10 (>10) | 10 (>10) | 5 (10) | 2.5 (5) | 10 (>10) | 2.5 (5) | 10 (>10) | 2.5 (5) | 2.5 (10) | 2.5 (5) | 5 (>10) | 2.5 (5) | 2.5 (5) |
S. aureus PCM 2054 | 5 (10) | 5 (10) | 10 (>10) | 5 (10) | 2.5 (10) | 5 (>10) | 2.5 (5) | 10 (>10) | 2.5 (5) | 2.5 (5) | 2.5 (5) | 5 (>10) | 2.5 (5) | 2.5 (5) |
B. cereus PCM 482 | 5 (>10) | >10 (>10) | 10 (>10) | 5 (>10) | 2.5 (>10) | 10 (>10) | 2.5 (>10) | 10 (>10) | 2.5 (>10) | 2.5 (>10) | 2.5 (10) | 10 (>10) | 2.5 (>10) | 2.5 (10) |
B. subtilis PCM 486 | 5 (>10) | >10 (>10) | 10 (10) | 5 (5) | 2.5 (5) | 10 (>10) | 1.25 (2.5) | 10 (>10) | 2.5 (2.5) | 2.5 (5) | 1.25 (2.5) | 10 (>10) | 2.5 (2.5) | 2.5 (5) |
P. aeruginosa PCM 2058 | 5 (5) | >10 (>10) | 10 (10) | 5 (10) | 2.5 (5) | >10 (>10) | 2.5 (2.5) | 10 (10) | 2.5 (5) | 5 (5) | 5 (5) | 10 (>10) | 2.5 (5) | 2.5 (5) |
E. cloacae PCM 2848 | 2.5 (5) | >10 (>10) | 10 (10) | 2.5 (5) | 1.25 (2.5) | >10 (>10) | 2.5 (2.5) | 10 (>10) | 2.5 (2.5) | 2.5 (2.5) | 5 (5) | 10 (>10) | 2.5 (2.5) | 2.5 (2.5) |
E. faecalis PCM 2909 | 5 (10) | >10 (>10) | 10 (>10) | 5 (10) | 5 (10) | >10 (>10) | 2.5 (5) | 10 (>10) | 2.5 (10) | 5 (10) | 5 (5) | >10 (>10) | 2.5 (10) | 5 (10) |
P. mirabilis PCM 543 | 2.5 (5) | 10 (>10) | 5 (10) | 2.5 (5) | 1.25 (5) | >10 (>10) | 1.25 (5) | 10 (>10) | 2.5 (5) | 2.5 (5) | 2.5 (5) | 10 (>10) | 2.5 (5) | 2.5 (5) |
Y. lipolytica KKP 379 | 2.5 (5) | 10 (>10) | 5 (10) | 2.5 (5) | 2.5 (2.5) | 10 (>10) | 5 (5) | >10 (>10) | 10 (>10) | 5 (5) | 5 (5) | 5 (10) | 5 (10) | 5 (5) |
S. cerevisiae | 5 (5) | 10 (10) | 5 (5) | 2.5 (2.5) | 2.5 (2.5) | 10 (10) | 5 (5) | >10 (>10) | 5 (5) | 5 (5) | 5 (5) | 5 (10) | 5 (5) | 5 (5) |
R. mucilaginosa | 2.5 (10) | 10 (10) | 5 (10) | 5 (5) | 2.5 (2.5) | 10 (>10) | 5 (5) | >10 (>10) | 5 (>10) | 5 (5) | 5 (5) | 5 (10) | 5 (5) | 5 (5) |
C. cylindracea DSM-2031 | 5 (5) | 10 (10) | 5 (5) | 5 (5) | 2.5 (2.5) | 10 (>10) | 5 (5) | >10 (>10) | 5 (5) | 5 (5) | 5 (5) | 5 (10) | 5 (5) | 5 (5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieniuk, B.; Wołoszynowska, M.; Białecka-Florjańczyk, E.; Fabiszewska, A. Synthesis of Industrially Useful Phenolic Compounds Esters by Means of Biocatalysts Obtained Along with Waste Fish Oil Utilization. Sustainability 2020, 12, 5804. https://doi.org/10.3390/su12145804
Zieniuk B, Wołoszynowska M, Białecka-Florjańczyk E, Fabiszewska A. Synthesis of Industrially Useful Phenolic Compounds Esters by Means of Biocatalysts Obtained Along with Waste Fish Oil Utilization. Sustainability. 2020; 12(14):5804. https://doi.org/10.3390/su12145804
Chicago/Turabian StyleZieniuk, Bartłomiej, Małgorzata Wołoszynowska, Ewa Białecka-Florjańczyk, and Agata Fabiszewska. 2020. "Synthesis of Industrially Useful Phenolic Compounds Esters by Means of Biocatalysts Obtained Along with Waste Fish Oil Utilization" Sustainability 12, no. 14: 5804. https://doi.org/10.3390/su12145804
APA StyleZieniuk, B., Wołoszynowska, M., Białecka-Florjańczyk, E., & Fabiszewska, A. (2020). Synthesis of Industrially Useful Phenolic Compounds Esters by Means of Biocatalysts Obtained Along with Waste Fish Oil Utilization. Sustainability, 12(14), 5804. https://doi.org/10.3390/su12145804