An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Dovì, V.; Meshalkin, V.P. Project LANDFRI—A Russian-Italian Project for the Optimal Design and Operation of Municipal Wastes in Landfills. In Proceedings of the 3° Russian-Italian Meeting on Energy Efficiency and Resources Conservation (Video Conference), Moscow, Russia, 15–16 June 2020. [Google Scholar]
- Pietrelli, L.; Ferro, S.; Vocciante, M. Eco-friendly and cost-effective strategies for metals recovery from printed circuit boards. Renew. Sustain. Energy Rev. 2019, 112, 317–323. [Google Scholar] [CrossRef]
- Pietrelli, L.; Ferro, S.; Reverberi, A.P.; Vocciante, M. Removal and recovery of heavy metals from tanning sludge subjected to plasma pyrolysis. J. Clean. Prod. 2020, in press. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Bruxelles 26/01/2017. COMM (2017) 33 Final. 2017. Available online: http://ec.europa.eu/environment/circular-economy/implementation_report_annex.pdf (accessed on 1 June 2020).
- Pietrelli, L.; Ferro, S.; Vocciante, M. Raw materials recovery from spent hydrochloric acid-based galvanizing wastewater. Chem. Eng. J. 2018, 341, 539–546. [Google Scholar] [CrossRef]
- Babu, G.L.S.; Lakshmikanthan, P.; Santhosh, L.G. Assessment of Landfill Sustainability. In Sustainability Issues in Civil Engineering; Springer: Singapore, 2017; pp. 257–269. [Google Scholar]
- Herva, M.; Roca, E. Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. J. Clean. Prod. 2013, 39, 355–371. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Pietrelli, L.; Dovì, V.G. Improved remediation processes through cost-effective estimation of soil properties from surface measurements. J. Clean. Prod. 2017, 167, 680–686. [Google Scholar] [CrossRef]
- Vocciante, M.; Finocchi, A.; D’auris, A.D.F.; Conte, A.; Tonziello, J.; Pola, A.; Reverberi, A.P. Pola Enhanced Oil Spill Remediation by Adsorption with Interlinked Multilayered Graphene. Materials 2019, 12, 2231. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium(III) Removal from Wastewater by Chitosan Flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef]
- Vocciante, M.; D’Auris, A.D.F.; Finocchi, A.; Tagliabue, M.; Bellettato, M.; Ferrucci, A.; Reverberi, A.P.; Ferro, S. Adsorption of ammonium on clinoptilolite in presence of competing cations: Investigation on groundwater remediation. J. Clean. Prod. 2018, 198, 480–487. [Google Scholar] [CrossRef]
- Pietrelli, L.; Ippolito, N.M.; Ferro, S.; Dovì, V.G.; Vocciante, M. Removal of Mn and As from drinking water by red mud and pyrolusite. J. Environ. Manag. 2019, 237, 526–533. [Google Scholar] [CrossRef]
- Ferrucci, A.; Vocciante, M.; Bagatin, R.; Ferro, S. Electrokinetic remediation of soils contaminated by potentially toxic metals: Dedicated analytical tools for assessing the contamination baseline in a complex scenario. J. Environ. Manag. 2017, 203, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; Bagatin, R.; Ferro, S. Enhancements in ElectroKinetic Remediation Technology: Focus on water management and wastewater recovery. Chem. Eng. J. 2017, 309, 708–716. [Google Scholar] [CrossRef]
- Barbafieri, M.; Pedron, F.; Petruzzelli, G.; Rosellini, I.; Franchi, E.; Bagatin, R.; Vocciante, M. Assisted phytoremediation of a multi-contaminated soil: Investigation on arsenic and lead combined mobilization and removal. J. Environ. Manag. 2017, 203, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Franchi, E.; Cosmina, P.; Pedron, F.; Rosellini, I.; Barbafieri, M.; Petruzzelli, G.; Vocciante, M. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. Sci. Total Environ. 2019, 655, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.A.; Delerue-Matos, C. A perspective on LCA application in site remediation services: Critical review of challenges. J. Hazard. Mater. 2010, 175, 12–22. [Google Scholar] [CrossRef]
- Vocciante, M.; Caretta, A.; Bua, L.; Bagatin, R.; Franchi, E.; Petruzzelli, G.; Ferro, S. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J. Environ. Manag. 2019, 237, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; De Follis D’Auris, A.; Franchi, E.; Caretta, A.; Petruzzelli, G.; Ferro, S. Environmental assessment in reclamation activities: Consolidate and innovative technologies in comparison. J. Clean. Prod. 2020, in press. [Google Scholar]
- Hix, K. Leak Detection for Landfill Liners: Overview of Tools for Vadose Zone Monitoring. Technology Status Report Prepared for the U.S. E.P.A. Technology Innovation Office. 1998. Available online: https://clu-in.org/s.focus/c/pub/i/110/ (accessed on 1 June 2020).
- Everett, L.G.; Hoylman, E.W.; Wilson, L.G.; McMillion, L.G. Constraints and Categories of Vadose Zone Monitoring Devices. Ground Water Monit. Remediat. 1984, 4, 26–32. [Google Scholar] [CrossRef]
- Dahan, O.; Talby, R.; Yechieli, Y.; Adar, E.; Lazarovitch, N.; Enzel, Y. In Situ Monitoring of Water Percolation and Solute Transport Using a Vadose Zone Monitoring System. Vadose Zone J. 2009, 8, 916–925. [Google Scholar] [CrossRef]
- Yuan, F.; Lu, Z. Analytical Solutions for Vertical Flow in Unsaturated, Rooted Soils with Variable Surface Fluxes. Vadose Zone J. 2005, 4, 1210–1218. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Dovì, V.G. Approximate solution of the inverse Richards’ problem. Appl. Math. Model. 2016, 40, 5364–5376. [Google Scholar] [CrossRef]
- Vocciante, M.; Reverberi, A.P.; Dovì, V.G. Generalisation of the solution of the inverse Richards’ problem. Chem. Eng. Trans. 2016, 52, 1285–1290. [Google Scholar] [CrossRef]
- Tocci, M.D.; Kelley, C.; Miller, C.T. Accurate and economical solution of the pressure-head form of Richards’ equation by the method of lines. Adv. Water Resour. 1997, 20, 1–14. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Soil Organic Matter. In Scheffer/SchachtschabelSoil Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 55–86. [Google Scholar]
- Soilmoisture—Instruments and Services for a Growing World. Available online: https://www.soilmoisture.com/pdfs/newproducts/HandiTrase%20Brochure.pdf (accessed on 1 June 2020).
- Skierucha, W. Accuracy of soil moisture measurement by TDR technique. Int. Agrophysics 2000, 14, 417–426. [Google Scholar]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Laboratory calibration of time domain reflectometry to determine moisture content in undisturbed peat samples. Eur. J. Soil Sci. 2011, 62, 505–515. [Google Scholar] [CrossRef]
- Leak Location Surveys—Geophysical Testing of Geomembranes Used in Landfills—LANDFILL GUIDANCE GROUP. (Industry Code of Practice No. LGG 113)—Version 1 (February 2018). Available online: http://www.esauk.org/application/files/4515/4454/1198/LGG_113_Leak_location_testing.pdf (accessed on 24 June 2020).
- Community Portal for Automatic Differentiation. Available online: www.autodiff.org (accessed on 28 June 2020).
Parameter | Value |
---|---|
L | 5 m |
α | 1 m−1 |
Ks | 0.01 m h−1 |
θs | 0.45 m3 m−3 |
θr | 0.20 m3 m−3 |
Coefficient | Value |
---|---|
β0 | 0.70 |
β1 | 0.00 |
β2 | −1.18 |
β3 | −1.66 |
β4 | −0.59 |
β5 | 1.18 |
β6 | 0.95 |
β7 | 0.71 |
β8 | 0.35 |
β9 | 0.24 |
Standard Deviation of Noise Added to the Data | F-Value | Probability of Absence of Leaks |
---|---|---|
0.001 | 53.77 | ≈0% |
0.01 | 3.23 | ≈9% |
0.02 | 0.558 | ≈47% |
0.1 | 0.0004 | Uninformative |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vocciante, M.; Meshalkin, V. An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability 2020, 12, 5598. https://doi.org/10.3390/su12145598
Vocciante M, Meshalkin V. An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability. 2020; 12(14):5598. https://doi.org/10.3390/su12145598
Chicago/Turabian StyleVocciante, Marco, and Valery Meshalkin. 2020. "An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills" Sustainability 12, no. 14: 5598. https://doi.org/10.3390/su12145598
APA StyleVocciante, M., & Meshalkin, V. (2020). An Accurate Inverse Model for the Detection of Leaks in Sealed Landfills. Sustainability, 12(14), 5598. https://doi.org/10.3390/su12145598