Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Instruments and Measures
”, either in its “small” or individual form (local attention) or in its “large” or compound form (global attention), with an approximate duration of 10 min.2.4. Procedure
2.5. Statistical Analyses
3. Results
3.1. Intra-Observer and Inter-Observer Reliability
3.2. Descriptive and Normality Analyses
3.3. Pearson Correlations
3.4. Linear Regressions
3.5. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mackenzie, R.; Cushion, C. Performance analysis in football: A critical review and implications for future research. J. Sports Sci. 2013, 31, 639–676. [Google Scholar] [CrossRef]
- Sarmento, H.; Marcelino, R.; Anguera, M.T.; Campaniço, J.; Matos, N.; Leitão, J.C. Match analysis in football: A systematic review. J. Sports Sci. 2014, 32, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, S.; Lorenzo-Calvo, A.; Cui, Y. Chinese soccer association super league, 2012–2017: Key performance indicators in balance games. Int. J. Perf. Anal. Sport 2018, 18, 645–656. [Google Scholar] [CrossRef]
- Gómez, M.A.; Lago, C.; Gómez, M.T.; Furley, P. Analysis of elite soccer players’ performance before and after signing a new contract. PLoS ONE 2019, 14, e0211058. [Google Scholar] [CrossRef] [PubMed]
- McLean, S.; Salmon, P.M.; Gorman, A.D.; Read, G.J.; Solomon, C. What’s in a game? A systems approach to enhancing performance analysis in football. PLoS ONE 2017, 12, e0172565. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.A.; Mitrotasios, M.; Armatas, V.; Lago-Peñas, C. Analysis of playing styles according to team quality and match location in Greek professional soccer. Int. J. Perf. Anal. Sport 2018, 18, 986–997. [Google Scholar] [CrossRef]
- Rein, R.; Memmert, D. Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus 2016, 5, 1–3. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, P.; Duarte, R.; Davids, K.; Garganta, J. Team sports performance analysed through the lens of social network theory: Implications for research and practice. Sports Med. 2017, 47, 1689–1696. [Google Scholar] [CrossRef]
- Winter, C.; Pfeiffer, M. Tactical metrics that discriminate winning, drawing and losing teams in UEFA Euro 2012®. J. Sports Sci. 2016, 34, 486–492. [Google Scholar] [CrossRef]
- Verburgh, L.; Scherder, E.J.; Van Lange, P.A.; Oosterlaan, J. Executive functioning in highly talented soccer players. PLoS ONE 2014, 9, e91254. [Google Scholar] [CrossRef]
- Meylan, C.; Cronin, J.; Oliver, J.; Hughes, M. Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. Int. J. Sports Sci. Coach. 2010, 5, 571–592. [Google Scholar] [CrossRef]
- Burgess, D.J.; Naughton, G.A. Talent development in adolescent team sports: A review. Int. J. Sports Physiol. Perform. 2010, 5, 103–116. [Google Scholar] [CrossRef]
- Elferink-Gemser, M.; Visscher, C.; Lemmink, K.; Mulder, T. Relation between multidimensional performance characteristics and level of performance in talented youth field hockey players. J. Sports Sci. 2004, 22, 1053–1063. [Google Scholar] [CrossRef]
- Pesce, C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Williams, A.M.; Nevill, A.; Franks, A. A multidisciplinary approach to talent identification in soccer. J. Sports Sci. 2000, 18, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Faubert, J. Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Sci. Rep. 2013, 3, 1154. [Google Scholar] [CrossRef]
- Faubert, J.; Sidebottom, L. Perceptual-cognitive training of athletes. J. Clin. Sport Psychol. 2012, 6, 85–102. [Google Scholar] [CrossRef]
- Ljac, V.; Witkowski, Z.; Gutni, B.; Samovarov, A.; Nash, D. Toward effective forecast of professionally important sensorimotor cognitive abilities of young soccer players. Percept. Mot. Ski. 2012, 114, 485–506. [Google Scholar] [CrossRef]
- Lundgren, T.; Högman, L.; Näslund, M.; Parling, T. Preliminary investigation of executive functions in elite ice hockey players. J. Clin. Sport Psychol. 2016, 10, 324–335. [Google Scholar] [CrossRef]
- Verburgh, L.; Scherder, E.J.; Van Lange, P.A.; Oosterlaan, J. Do elite and amateur soccer players outperform non-athletes on neurocognitive functioning? A study among 8-12 years old children. PLoS ONE 2016, 11, e0165741. [Google Scholar] [CrossRef] [PubMed]
- Vestberg, T.; Reinebo, G.; Maurex, L.; Ingvar, M.; Petrovic, P. Core executive functions are associated with success in young elite soccer players. PLoS ONE 2017, 12, e0170845. [Google Scholar] [CrossRef] [PubMed]
- Heppe, H.; Kohler, A.; Fleddermann, M.T.; Zentgraf, K. The relationship between expertise in sports, visuospatial, and basic cognitive skills. Front. Psychol. 2016, 7, 904. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Tessitore, A.; Casella, R.; Pirritano, M.; Capranica, L. Focusing of visual attention at rest and during physical exercise in soccer players. J. Sports Sci. 2007, 25, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Schmidt, M.; Wellmann, K.; Braumann, K.M. General perceptual-cognitive abilities: Age and position in soccer. PLoS ONE 2018, 13, e0202627. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, S.; Takeuchi, H.; Ihara, N.; Ligao, B.; Suzukawa, K. Possible requirement of executive functions for high performance in soccer. PLoS ONE 2018, 13, e0201871. [Google Scholar] [CrossRef]
- Vestberg, T.; Gustafson, R.; Maurex, L.; Ingvar, M.; Petrovic, P. Executive functions predict the success of top-soccer players. PLoS ONE 2012, 7, e34731. [Google Scholar] [CrossRef]
- Huijgen, B.C.; Leemhuis, S.; Kok, N.M.; Verburgh, L.; Oosterlaan, J.; Elferink-Gemser, M.T.; Visscher, C. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS ONE 2015, 10, e0144580. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Harrison, C.R.; Chason, J.; Vakil, E.; Bardell, L.; Boileau, R.A.; et al. Ageing, fitness and neurocognitive function. Nature 1999, 400, 418–419. [Google Scholar] [CrossRef]
- Ballester, R.; Huertas, F.; Yuste, F.J.; Llorens, F.; Sanabria, D. The relationship between regular sports participation and vigilance in male and female adolescents. PLoS ONE 2015, 10, e0123898. [Google Scholar] [CrossRef]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Ploughman, M. Exercise is brain food: The effects of physical activity on cognitive function. Dev. Neurorehabil. 2008, 11, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, L.; Erickson, K.I.; Holtrop, J.L.; Voss, M.W.; Pontifex, M.B.; Raine, L.B.; Hillman, C.H.; Kramer, A.F. Aerobic fitness is associated with greater white matter integrity in children. Front. Hum. Neurosci. 2014, 8, 584. [Google Scholar]
- Voss, M.W.; Heo, S.; Prakash, R.S.; Erickson, K.I.; Alves, H.; Chaddock, L.; Szabo, A.N.; Mailey, E.L.; Wójcicki, T.R.; White, S.M.; et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Hum. Brain Mapp. 2013, 34, 2972–2985. [Google Scholar] [CrossRef]
- Chevalier, N.; Kurth, S.; Doucette, M.R.; Wiseheart, M.; Deoni, S.C.; Dean, D.C., III; O’Muircheartaigh, J.; Blackwell, K.A.; Munakata, Y.; LeBourgeois, M.K. Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS ONE 2015, 10, e0139897. [Google Scholar] [CrossRef]
- Chaddock, L.; Erickson, K.I.; Voss, M.W.; Powers, J.P.; Knecht, A.M.; Pontifex, M.B.; Castelli, D.; Hillman, C.; Kramer, A. White matter microstructure is associated with cognitive control in children. Biol. Psychol. 2013, 94, 109–115. [Google Scholar] [CrossRef]
- Reigal, R.E.; González-Guirval, F.; Morillo-Baro, J.P.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A. Effects of a computerized training on attentional capacity of young soccer players. Front. Psychol. 2019, 10, 2279. [Google Scholar] [CrossRef]
- Chaddock, L.; Pontifex, M.B.; Hillman, C.H.; Kramer, A.F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J. Int. Neuropsych. Soc. 2011, 17, 975–985. [Google Scholar] [CrossRef]
- Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; VanPatter, M.; Pontifex, M.B.; Raine, L.B.; Konkel, A.; Hillman, C.H.; et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. [Google Scholar] [CrossRef]
- Tomporowski, P.D.; Lambourne, K.; Okumura, M.S. Physical activity interventions and children’s mental function: An introduction and overview. Prev. Med. 2011, 52, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, walking, talking: Integratory motor and cognitive brain function. Public Health Front. 2016, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Scharfen, H.E.; & Memmert, D. The Relationship Between Cognitive Functions and Sport-Specific Motor Skills in Elite Youth Soccer Players. Front. Psychol. 2019, 10, 817. [Google Scholar] [CrossRef]
- Ato, M.; López-García, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. Ann. Psicol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- Ruíz, J.R.; España-Romero, V.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Cuenca-García, M.; Jiménez-Pavón, D.; Chillón, P.; Girela-Rejón, M.; Mora, J.; et al. Batería ALPHA-Fitness: Test de campo para la evaluación de la condición física relacionada con la salud en niños y adolescentes. Nutr. Hosp. 2011, 26, 1210–1214. [Google Scholar]
- Leger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Brickenkamp, R.; Cubero, N. d2: Test de atención: Manual; TEA: Madrid, Spain, 2009. [Google Scholar]
- Blanca, M.J.; Zalabardo, C.; Rando, B.; López-Montiel, D.; Luna, R. AGL, Atención Global-Local. Madrid; TEA: Madrid, Spain, 2005. [Google Scholar]
- Wechsler, D. Escala de inteligencia de Wechsler para niños (WISC-IV): Manual técnico y de interpretación; TEA: Madrid, Spain, 2005. [Google Scholar]
- Oslin, J.L.; Mitchell, S.A.; Griffin, L.L. The game performance assessment instrument (GPAI): Development and preliminary validation. J. Teahc. Phys. Educ. 1998, 17, 231–243. [Google Scholar] [CrossRef]
- Mitchell, S.A.; Oslin, J.L.; Griffin, L.L. The effects of two instructional approaches on game performance. Pedagog. Pract. Teach. Coach. Phys. Educ. Sports 1995, 1, 36–48. [Google Scholar]
- Wright, S.; McNeill, M.; Fry, J.; Wang, J. Teaching teachers to play and teach games. Phys. Educ. Sport Pedagog. 2005, 10, 61–82. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014, 81, 14–18. [Google Scholar]
- Hernández-Mendo, A.; López-López, J.; Castellano, J.; Morales-Sánchez, V.; Pastrana, J.L. Programa informático para uso en metodología observacional. Cuad. de Psicol. del Deporte 2012, 12, 55–78. [Google Scholar] [CrossRef][Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sport Exer. 2004, 36, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sporis, G.; Jukic, I.; Ostojic, S.M.; Milanovic, D. Fitness profiling in soccer: Physical and physiologic characteristics of elite players. J. Strength Cond. Res. 2009, 23, 1947–1953. [Google Scholar] [PubMed]
- Hill-Haas, S.V.; Dawson, B.; Impellizzeri, F.M.; Coutts, A.J. Physiology of small-sided games training in football. Sports Med. 2011, 41, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Jeunet, C.; Tonin, L.; Albert, L.; Chavarriaga, R.; Bideau, B.; Argelaguet, F.; Millán, J.D.R.; Lécuyer, A.; Kulpa, R. Uncovering eeG correlates of covert Attention in Soccer Goalkeepers: Towards innovative Sport training procedures. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Roca, A.; Ford, P.R.; Memmert, D. Creative decision making and visual search behavior in skilled soccer players. PLoS ONE 2018, 13, e0199381. [Google Scholar] [CrossRef]
- Rusciano, A.; Corradini, G.; Stoianov, I. Neuroplus biofeedback improves attention, resilience, and injury prevention in elite soccer players. Psychophysiology 2017, 54, 916–926. [Google Scholar] [CrossRef]
- De la Vega, M.R. La importancia del entrenamiento de la concentración en el fútbol base: Una perspectiva aplicada. Cuad. de Psicol. del Deporte 2003, 3, 67–82. [Google Scholar]
- Papanikolaou, Z. Attention in young soccer players: The development of an attentional focus training program. J. Life Sci. 2011, 3, 1–12. [Google Scholar] [CrossRef]
- Cardoso, F.D.; González-Víllora, S.; Guilherme, J.; Teoldo, I. Young soccer players with higher tactical knowledge display lower cognitive effort. Percept. Mot. Ski. 2019, 126, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Romeas, T.; Guldner, A.; Faubert, J. 3D-Multiple Object Tracking training task improves passing decision-making accuracy in soccer players. Psychol. Sport Exerc. 2016, 22, 1–9. [Google Scholar] [CrossRef]
- Appelbaum, L.G.; Erickson, G. Sports vision training: A review of the state-of-the-art in digital training techniques. Int. Rev. Sport Exerc. Psychol. 2018, 11, 160–189. [Google Scholar] [CrossRef]
| Intra-Observer Concordance | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| r | ρ | tb (F) | tb (I) | Cohen’s Kappa | Phi Coefficient | |||||||
| ±1 | ±3 | ±5 | ±7 | ±1 | ±3 | ±5 | ±7 | |||||
| Under 14 | 0.99 | 0.95 | 0.92 | 0.91 | 0.79 | 0.89 | 0.92 | 0.92 | 0.80 | 0.88 | 0.91 | 0.92 |
| Under 16 | 0.99 | 0.97 | 0.94 | 0.94 | 0.78 | 0.90 | 0.92 | 0.93 | 0.79 | 0.90 | 0.92 | 0.92 |
| Inter-Observer Matching | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| r | ρ | tb (F) | tb (I) | Cohen’s Kappa | Phi Coefficient | |||||||
| ±1 | ±3 | ±5 | ±7 | ±1 | ±3 | ±5 | ±7 | |||||
| Under 14 | 0.99 | 0.88 | 0.88 | 0.86 | 0.65 | 0.79 | 0.82 | 0.84 | 0.66 | 0.79 | 0.81 | 0.83 |
| Under 16 | 0.99 | 0.91 | 0.85 | 0.84 | 0.70 | 0.80 | 0.83 | 0.84 | 0.70 | 0.79 | 0.82 | 0.83 |
| M | SD | S | K | K–S | |
|---|---|---|---|---|---|
| Age | 13.87 | 1.33 | 0.15 | −1.19 | 0.21 |
| Physical fitness test | |||||
| Body fat % | 17.65 | 4.69 | 1.45 | 2.78 | 1.28 |
| Standing long jump | 197.42 | 24.93 | 0.12 | −0.65 | 0.80 |
| VO2 max | 48.27 | 7.05 | 0.62 | 0.60 | 0.83 |
| Speed test | 10.46 | 1.18 | −0.23 | −0.09 | 1.32 |
| Attention test | |||||
| D2-TE | 62.00 | 20.03 | −0.21 | −0.38 | 0.71 |
| D2-TH | 58.41 | 20.28 | −0.05 | 0.03 | 0.77 |
| D2-O | 42.61 | 20.83 | −0.04 | −0.02 | 0.74 |
| D2-C | 44.92 | 17.73 | −0.60 | −0.08 | 1.31 |
| D2-TET | 59.99 | 19.74 | −0.09 | −0.16 | 0.65 |
| D2-CON | 56.22 | 21.26 | −0.15 | 0.02 | 0.64 |
| D2-TE(+) | 65.35 | 19.65 | −0.51 | 0.45 | 0.84 |
| D2-TE(−) | 59.87 | 24.66 | −0.08 | −0.61 | 0.89 |
| D2-VAR | 58.25 | 21.54 | −0.43 | 0.01 | 0.97 |
| GLA-Local Execution | 54.52 | 37.27 | −0.29 | −1.49 | 1.27 |
| GLA-Global Execution | 49.02 | 36.21 | −0.06 | −1.53 | 1.34 * |
| GLA-Total Execution | 51.49 | 36.71 | −0.14 | −1.60 | 1.42 * |
| GLA-Relative Execution | 58.99 | 33.75 | −0.32 | −1.35 | |
| Processing speed test | |||||
| WISC IV-Coding | 10.09 | 2.71 | −0.17 | −0.33 | 1.00 |
| WISC IV-Symbol Search | 10.48 | 4.25 | −0.27 | −0.23 | 1.08 |
| WISC IV-Processing Speed Index | 102.66 | 15.67 | −0.20 | −0.53 | 0.71 |
| Playing behavior | |||||
| GPAI-DMI | 0.76 | 0.10 | −0.91 | 2.19 | 0.88 |
| GPAI-SEI | 0.72 | 0.10 | −0.25 | 0.21 | 0.65 |
| GPAI-SI | 0.93 | 0.07 | −1.09 | 0.56 | 1.76 ** |
| GPAI-PI | 25.76 | 5.84 | −0.12 | −0.44 | 0.47 |
| GPAI-GPI | 0.81 | 0.07 | −0.82 | 2.52 | 1.03 |
| GPAI | |||||
|---|---|---|---|---|---|
| DMI | SEI | SI | PI | GPI | |
| Age | 0.20 | 0.19 | −0.21 | 0.05 | 0.09 |
| Physical fitness test | |||||
| Body fat % | −0.11 | −0.03 | 0.01 | −0.20 | 0.02 |
| Standing long jump | 0.05 | 0.03 | −0.19 | 0.11 | −0.08 |
| VO2 max | 0.18 | 0.18 | 0.06 | 0.03 | 0.19 |
| Speed test | −0.16 | −0.20 | 0.02 | −0.04 | −0.14 |
| Attention test | |||||
| D2-TE | 0.19 | 0.28 ** | 0.23 ** | 0.20 | 0.29 ** |
| D2-TH | 0.23 * | 0.27* | 0.15 | 0.15 | 0.29 ** |
| D2-O | 0.13 | 0.01 | −0.07 | 0.05 | 0.08 |
| D2-C | 0.09 | 0.06 | 0.11 | 0.10 | 0.06 |
| D2-TET | 0.24 * | 0.31 ** | 0.22 * | 0.17 | 0.33 ** |
| D2-CON | 0.23 * | 0.24 * | 0.17 | 0.12 | 0.27 * |
| D2-TE(+) | −0.03 | 0.13 | 0.18 | 0.16 | 0.10 |
| D2-TE(−) | 0.22 * | 0.21 | 0.15 | 0.20 | 0.26 * |
| D2-VAR | 0.25 * | 0.11 | 0.01 | 0.02 | 0.20 |
| GLA-Local Execution | 0.07 | 0.13 | −0.03 | 0.16 | 0.09 |
| GLA-Global Execution | 0.16 | 0.13 | 0.14 | 0.12 | 0.15 |
| GLA-Total Execution | 0.16 | 0.14 | 0.11 | 0.17 | 0.14 |
| GLA-Relative Execution | 0.15 | 0.08 | 0.09 | 0.07 | 0.12 |
| Processing speed test | |||||
| WISC IV-Coding | 0.16 | 0.20 | 0.03 | 0.17 | 0.15 |
| WISC IV-Symbol Search | 0.30 ** | 0.23* | −0.02 | 0.27 * | 0.23 * |
| WISC IV-PS Index | 0.29 ** | 0.26* | −0.03 | 0.28 ** | 0.24 * |
| Criterion Variable | ANOVA | R | R2 Adjusted | D–W | Predictor Variable | Beta | t | T | VIF |
|---|---|---|---|---|---|---|---|---|---|
| DMI | 5.91 ** | 0.36 | 0.11 | 2.15 | WISC IV-PSI | 0.23 | 2.16 * | 0.94 | 1.06 |
| D2-VAR | 0.22 | 2.09 | 0.94 | 1.06 | |||||
| SEI | 8.84 * | 0.31 | 0.09 | 1.95 | D2-TET | 0.31 | 2.97 ** | 1.00 | 1.00 |
| PI | 11.07 ** | 0.35 | 0.11 | 2.26 | WISC IV-PSI | 0.35 | 3.32 ** | 1.00 | 1.00 |
| GPI | 10.25 ** | 0.33 | 0.10 | 2.17 | D2-TET | 0.33 | 3.20 ** | 1.00 | 1.00 |
| G1 | G2 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | S | K | S–W | M | SD | S | K | S–W | |
| GPAI-DMI | 0.80 | 0.08 | −0.10 | 0.19 | 0.98 | 0.72 | 0.11 | −1.06 | 1.86 | 0.92 * |
| GPAI-SEI | 0.75 | 0.09 | 0.04 | −0.60 | 0.98 | 0.67 | 0.09 | −0.52 | 0.31 | 0.97 |
| GPAI-SI | 0.95 | 0.06 | −1.53 | 3.31 | 0.82 *** | 0.91 | 0.08 | −0.55 | −0.94 | 0.89 ** |
| GPAI-PI | 26.88 | 5.70 | 0.04 | −0.67 | 0.97 | 24.32 | 5.78 | −0.31 | −0.55 | 0.98 |
| GPAI-GPI | 0.83 | 0.06 | 0.31 | −0.58 | 0.96 | 0.77 | 0.07 | −1.41 | 2.69 | 0.89 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabarit, A.; Reigal, R.E.; Morillo-Baro, J.P.; Juárez-Ruiz de Mier, R.; Franquelo, A.; Hernández-Mendo, A.; Falcó, C.; Morales-Sánchez, V. Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability 2020, 12, 5245. https://doi.org/10.3390/su12135245
Sabarit A, Reigal RE, Morillo-Baro JP, Juárez-Ruiz de Mier R, Franquelo A, Hernández-Mendo A, Falcó C, Morales-Sánchez V. Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability. 2020; 12(13):5245. https://doi.org/10.3390/su12135245
Chicago/Turabian StyleSabarit, Alejandro, Rafael E. Reigal, Juan P. Morillo-Baro, Rocío Juárez-Ruiz de Mier, Auxiliadora Franquelo, Antonio Hernández-Mendo, Coral Falcó, and Verónica Morales-Sánchez. 2020. "Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players" Sustainability 12, no. 13: 5245. https://doi.org/10.3390/su12135245
APA StyleSabarit, A., Reigal, R. E., Morillo-Baro, J. P., Juárez-Ruiz de Mier, R., Franquelo, A., Hernández-Mendo, A., Falcó, C., & Morales-Sánchez, V. (2020). Cognitive Functioning, Physical Fitness, and Game Performance in a Sample of Adolescent Soccer Players. Sustainability, 12(13), 5245. https://doi.org/10.3390/su12135245

