Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area
Abstract
:1. Introduction
2. State of the Art in Exploratory Data Analysis and Data Envelopment Analysis of CDW
3. Materials and Methods
3.1. Exploratory Data Analysis (EDA) for Assessing the Efficiency and Sustainability of CDW Management
3.2. New Indicators for Assessing the Efficiency and Sustainability of CDW Management
3.3. Data Envelopment Analysis (DEA) for Assessing the Efficiency and Sustainability of CDW Management
3.4. Ranking Countries According to Efficiency Indicators
4. Results
4.1. Assessing the Efficiency and Sustainability of EEA MS CDW Management using EDA
- Good Quality: Austria, Czech Republic, Denmark, Germany, the Netherlands, Poland, Portugal, Slovakia, Slovenia;
- Modest Quality: Belgium, Croatia, Estonia, France, Italy, Lithuania, Luxembourg, Spain, the UK;
- Poor Quality: Bulgaria, Cyprus, Finland, Greece, Ireland, Latvia, Malta, Romania, Sweden.
4.2. Assessing the Sustainability and Efficiency of EEA MS CDW Management Using DEA
4.3. Ranking Countries According to Efficiency Measures
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- -
- Eurostat website at: https://ec.europa.eu/eurostat/data/database, reference number: cei_wm040, env_wasgen Construction (class F under NACE Rev.2), ilc_lvho01
- -
- European Statistical Census “EU 2011 Population and Housing Census” https://ec.europa.eu/eurostat/web/population-and-housing-census/census-data/2011-census
- -
- EU Buildings Database. Building Stock Characteristics
- -
References
- Villoria Sáez, P.; Osmani, M. A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Aslam, M.S.; Huang, B.; Cui, L. Review of construction and demolition waste management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef] [PubMed]
- Weil, M.; Jeske, U.; Schebek, L. Closed-loop recycling of construction and demolition waste in Germany in view of stricter environmental threshold values. Waste Manag. Res. 2006, 24, 197–206. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Construction and Demolition Waste. Available online: https://ec.europa.eu/environment/waste/construction_demolition.htm (accessed on 16 May 2020).
- European Commission. EU Construction and Demolition Waste Protocol and Guidelines. Available online: https://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en (accessed on 16 May 2020).
- European Commission. Eurostat Statistics Explained. Waste Statistics. 2019. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics (accessed on 16 May 2020).
- European Commission. Circular Economy Action Plan. 2020. Available online: https://ec.europa.eu/environment/circular-economy/ (accessed on 16 May 2020).
- European Commission. First Circular Economy Action Plan. 2015. Available online: https://ec.europa.eu/environment/circular-economy/first_circular_economy_action_plan.html (accessed on 16 May 2020).
- Munaro, M.R.; Tavares, S.F.; Bragança, L. Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. J. Clean. Prod. 2020, 260, 121134. [Google Scholar] [CrossRef]
- European Commission. Building Sustainability Performance—Level(s). Available online: https://ec.europa.eu/environment/eussd/buildings.htm (accessed on 16 May 2020).
- Tukey, J.W. Exploratory Data Analysis; Addison Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis; Springer: New York, NY, USA, 1999. [Google Scholar]
- Mália, M.; de Brito, J.; Pinheiro, M.D.; Bravo, M. Construction and demolition waste indicators. Waste Manag Res. 2013, 31, 241–255. [Google Scholar] [CrossRef]
- Nuñez-Cacho, P.; Górecki, J.; Molina-Moreno, V.; Corpas-Iglesias, F.A. What gets measured, gets done: Development of a circular economy measurement scale for building industry. Sustainability 2018, 10, 2340. [Google Scholar]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2017, 23, 216–224. [Google Scholar] [CrossRef]
- Ghosh, A.; Nashaat, M.; Miller, J.; Quader, S.; Marston, C. A comprehensive review of tools for exploratory analysis of tabular industrial datasets. Visual Inform. 2018, 2, 235–253. [Google Scholar] [CrossRef]
- Velicer, W.F.; Jackson, D.N. Component Analysis versus Common Factor Analysis: Some issues in Selecting an Appropriate Procedure. Multivar. Behav. Res. 1990, 25, 1–28. [Google Scholar] [CrossRef]
- Ecke, H. Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. J. Waste Manag. 2003, 23, 631–640. [Google Scholar] [CrossRef]
- Kim, K.D.; Lee, E.J. Soil seed bank of the waste landfills in South Korea. Plant Soil 2005, 271, 109–121. [Google Scholar] [CrossRef]
- Deloitte. Study on Resource Efficient Use of Mixed Wastes, Improving Management of Construction and Demolition Waste—Final Report. Prepared for the European Commission, DG ENV. 2017. Available online: https://ec.europa.eu/environment/waste/studies/pdf/CDW_Final_Report.pdf (accessed on 16 May 2020).
- Halkos, G.; Petrou, K.N. Assessing 28 EU member states’ environmental efficiency in national waste generation with DEA. J. Clean. Prod. 2019, 208, 509–521. [Google Scholar] [CrossRef]
- Expósito, A.; Velasco, F. Municipal solid-waste recycling market and the European 2020 Horizon Strategy: A regional efficiency analysis in Spain. J. Clean. Prod. 2018, 172, 938–948. [Google Scholar] [CrossRef]
- Kucukvar, M.; Tatari, O. Eco-Efficiency of Construction Materials: Data Envelopment Analysis. J. Constr. Eng. Manag. 2012, 138, 733–741. [Google Scholar]
- Finnveden, G.; Moberg, Å. Environmental systems analysis tools—An overview. J. Clean. Prod. 2005, 13, 1165–1173. [Google Scholar] [CrossRef]
- Setac-Europe. Life-Cycle Assessment in Building and Construction: A State-of-the-Art Report; SETAC: Pensacola, FL, USA, 2003. [Google Scholar]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Butera, S.; Christensen, T.H.; Astrup, T.F. Life cycle assessment of construction and demolition waste management. J. Waste Manag. 2015, 44, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Fregonara, E.; Giordano, R.; Ferrando, D.G.; Pattono, S. Economic-environmental indicators to support investment decisions: A focus on the buildings’ end-of-life stage. Buildings 2017, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Tufféry, S. Data Mining and Statistics for Decision Making; Wiley: Chichester, UK, 2011; Volume 2. [Google Scholar]
- Abdella, G.M.; Kucukvar, M.; Onat, N.C.; Al-Yafay, H.M.; Bulak, M.E. Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. J. Clean. Prod. 2020, 251, 119661. [Google Scholar] [CrossRef]
- Kristensen, H.S.; Mosgaard, M.A. A review of micro level indicators for a circular economy-moving away from the three dimensions of sustainability? J. Clean. Prod. 2020, 243, 118531. [Google Scholar] [CrossRef]
- Parchomenko, A.; Nelen, D.; Gillabel, J.; Rechberger, H. Measuring the circular economy—A Multiple Correspondence Analysis of 63 metrics. J. Clean. Prod. 2019, 210, 200–216. [Google Scholar] [CrossRef]
- Łozowicka, A. Evaluation of the Efficiency of Sustainable Development Policy Implementation in Selected EU Member States Using DEA. The Ecological Dimension. Sustainability 2020, 12, 435. [Google Scholar]
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular economy performance assessment methods: A systematic literature review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Fare, R.; Grosskopf, S. Modelling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 2004, 157, 242–245. [Google Scholar] [CrossRef]
- Seiford, L.M.; Zhu, J. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 2002, 142, 16–20. [Google Scholar] [CrossRef]
- Mohd, S.A.; Khan, N.; Ramli, R.; Azizul Baten, M.D. Enhanced DEA model with undesirable output and interval data for rice growing farmers performance assessment. AIP Conf. Proc. 2015, 1691, 030016. [Google Scholar]
Indicators | Definition | Unit |
---|---|---|
CYD: Construction Year Distribution | Distribution of building depending on the construction period | Percentages |
ABA: Average Building Age | Estimated average age of buildings | Years |
BEOL: Building End of Life | Useful life period according to the generally adopted accounting principles for each country (e.g., 50 years) | Years |
DPDT: Distribution of Population by Dwelling Type | Share of the population living in (a) building with at least 10 flats, (b) buildings under 10 flats, (c) semidetached, and (d) detached houses | Percentages |
DPTC: Dwellings per Thousand Capita | Dwellings per thousand capita | Units per thousand capita |
ODPTC: Occupied Dwellings per Thousand Capita | Occupied dwellings per thousand capita | Units per thousand capita |
DOR: Dwelling Occupancy Ratio | ODPTC/DPTC | Percentage |
CDW/GVA | CDW per million € Gross Value Added (GVA) | Ton/M€ |
CDW/SGVA | CDW per million € Construction GVA | Ton/M€ |
CDWPC: CDW per Capita | CDW per capita | kg/capita |
CDMWPC: CD Mineral Waste Per Capita | CDW per capita | kg/capita |
CDWB: CDW Breakdown | Distribution of the elements of CDW | Percentages |
CDWRR: CDW Recovery Rate | Recovery rate of mineral waste of construction and demolition | Percentage |
CDWNRPC: CDW non recovered per capita | CDW non recovered per capita | kg/capita |
HCDWPC: Hazardous CDW per capita | Hazardous CDW per capita | kg/capita |
No. | EEA MS | Score | Rank | NHMCDW (I) (M tons) | Efficient NHMCDW | SGVA (O) (M €) | CDWRR (O) (%) |
---|---|---|---|---|---|---|---|
1 | Luxembourg | 0.9996 | 8 | 0.482 | −0.04% | 2745 | 100 |
2 | Malta | 0.369 | 18 | 1.306 | −63.1% | 326 | 100 |
3 | The Netherlands | 0.999 | 9 | 17.571 | −0.1% | 28,188 | 100 |
4 | Hungary | 0.199 | 25 | 1.957 | −80.1% | 3509 | 99 |
5 | Iceland | 1 | 1 | 0.028 | 0.0% | 1139 | 99 |
6 | Italy | 0.791 | 11 | 34.804 | −20.9% | 65,599 | 98 |
7 | Latvia | 0.273 | 21 | 0.107 | −72.7% | 1187 | 98 |
8 | Slovenia | 0.245 | 22 | 0.161 | −75.5% | 1816 | 98 |
9 | Estonia | 0.062 | 31 | 0.485 | −93.8% | 1229 | 97 |
10 | Lithuania | 0.106 | 28 | 0.446 | −89.4% | 2335 | 97 |
11 | Portugal | 0.510 | 16 | 0.888 | −49.0% | 6523 | 97 |
12 | Ireland | 0.9999 | 7 | 0.135 | 0% | 5944 | 96 |
13 | United Kingdom | 0.892 | 10 | 63.047 | −10.8% | 132,133 | 96 |
14 | Belgium | 0.218 | 24 | 15.769 | −78.2% | 19,869 | 95 |
15 | Germany | 0.673 | 13 | 80.968 | −32.7% | 132,544 | 94 |
16 | Czech Republic | 0.107 | 27 | 2.742 | −89.3% | 8694 | 92 |
17 | Poland | 1 | 1 | 2.436 | 0% | 26,259 | 91 |
18 | Bulgaria | 0.277 | 20 | 0.131 | −72.3% | 1642 | 90 |
19 | Denmark | 0.234 | 23 | 3.358 | −76.6% | 13,380 | 90 |
20 | EU28 | 1 | 1 | 312.890 | 0% | 703,005 | 89 |
21 | Austria | 0.158 | 26 | 9.768 | −84.2% | 19,954 | 88 |
22 | Greece | 0.563 | 15 | 0.126 | −43.7% | 3845 | 88 |
23 | Finland | 0.486 | 17 | 1.267 | −51.4% | 13,120 | 87 |
24 | Romania | 1 | 1 | 0.173 | 0% | 10,300 | 85 |
25 | Spain | 1 | 1 | 12.117 | 0% | 59,374 | 79 |
26 | Croatia | 0.074 | 30 | 0.554 | −92.6% | 1926 | 76 |
27 | France | 0.592 | 14 | 59.102 | −40.8% | 108,362 | 71 |
28 | Norway | 0.681 | 12 | 2.168 | −31.9% | 19,610 | 71 |
29 | Sweden | 1 | 1 | 2.368 | 0% | 25,980 | 61 |
30 | Cyprus | 0.088 | 29 | 0.325 | −91.2% | 750 | 57 |
31 | Slovakia | 0.333 | 19 | 0.297 | −66.7% | 5602 | 54 |
No. | EEA MS | Score | Rank | NHMCDW (I) | NHMCDW Recovered (O) | Distance to Efficiency | CDWRR (%) |
---|---|---|---|---|---|---|---|
1 | Luxembourg | 1 | 1 | 0.482 | 0.482 | 0% | 100 |
2 | Malta | 1 | 1 | 1.306 | 1.306 | 0% | 100 |
3 | The Netherlands | 1 | 1 | 17.571 | 17.571 | 0% | 100 |
4 | Hungary | 0.990 | 9 | 1.957 | 1.938 | 0% | 99 |
5 | Iceland | 1 | 1 | 0.028 | 0.028 | 0% | 99 |
6 | Italy | 1 | 1 | 34.804 | 34.108 | 0% | 98 |
7 | Latvia | 0.982 | 10 | 0.107 | 0.105 | +1.8% | 98 |
8 | Slovenia | 0.981 | 11 | 0.161 | 0.158 | +1.9% | 98 |
9 | Estonia | 0.970 | 12 | 0.485 | 0.470 | +3.1% | 97 |
10 | Lithuania | 0.970 | 12 | 0.446 | 0.432 | +3.1% | 97 |
11 | Portugal | 0.970 | 12 | 0.888 | 0.861 | +3.1% | 97 |
12 | Ireland | 0.962 | 15 | 0.135 | 0.130 | +4.0% | 96 |
13 | United Kingdom | 1 | 1 | 63.047 | 60.525 | 0% | 96 |
14 | Belgium | 0.950 | 16 | 15.769 | 14.981 | +5.3% | 95 |
15 | Germany | 0.999 | 8 | 80.968 | 76.110 | +0.1% | 94 (*) |
16 | Czech Republic | 0.920 | 17 | 2.742 | 2.522 | +8.7% | 92 |
17 | Poland | 0.910 | 18 | 2.436 | 2.217 | +9.9% | 91 |
18 | Bulgaria | 0.902 | 19 | 0.131 | 0.118 | +10.9% | 90 |
19 | Denmark | 0.900 | 20 | 3.358 | 3.022 | +11.1% | 90 |
20 | EU28 | 1 | 1 | 312.890 | 278.472 | 0% | 89 |
21 | Austria | 0.880 | 22 | 9.768 | 8.596 | +13.6% | 88 |
22 | Greece | 0.882 | 21 | 0.126 | 0.111 | +13.4% | 88 |
23 | Finland | 0.870 | 23 | 1.267 | 1.103 | +14.9% | 87 |
24 | Romania | 0.851 | 24 | 0.173 | 0.147 | +17.5% | 85 |
25 | Spain | 0.790 | 25 | 12.117 | 9.572 | +26.6% | 79 |
26 | Croatia | 0.760 | 26 | 0.554 | 0.421 | +31.6% | 76 |
27 | France | 0.738 | 27 | 59.102 | 41.962 | +35.4% | 71 |
28 | Norway | 0.710 | 28 | 2.168 | 1.539 | +40.8% | 71 |
29 | Sweden | 0.610 | 29 | 2.368 | 1.445 | +63.9% | 61 |
30 | Cyprus | 0.570 | 30 | 0.325 | 0.185 | +75.4% | 57 |
31 | Slovakia | 0.540 | 31 | 0.297 | 0.160 | +85.1% | 54 |
Position | EEA MS | Sustainability (S) Score | Efficiency (E) Score | S+E Score | Data Quality |
---|---|---|---|---|---|
1 | Iceland | 1 | 1 | 2.000 | NA |
2 | Luxembourg | 0.9996 | 1 | 1.9996 | Modest |
3 | The Netherlands | 0.9992 | 1 | 1.9992 | Good |
4 | Ireland | 0.9999 | 0.9615 | 1.9614 | Poor |
5 | Poland | 1 | 0.910 | 1.910 | Good |
6 | United Kingdom | 0.892 | 1 | 1.892 | Modest |
7 | Romania | 1 | 0.851 | 1.851 | Poor |
8 | Italy | 0.791 | 1 | 1.791 | Modest |
9 | Spain | 1 | 0.790 | 1.790 | Modest |
10 | Germany | 0.673 | 0.999 | 1.672 | Good |
11 | Sweden | 1 | 0.610 | 1.610 | Poor |
12 | Portugal | 0.510 | 0.970 | 1.480 | Good |
13 | Greece | 0.563 | 0.882 | 1.445 | Poor |
14 | Norway | 0.681 | 0.710 | 1.391 | NA |
15 | Malta | 0.369 | 1 | 1.369 | Poor |
16 | Finland | 0.486 | 0.870 | 1.356 | Poor |
17 | France | 0.592 | 0.738 | 1.330 | Modest |
18 | Latvia | 0.273 | 0.982 | 1.255 | Poor |
19 | Slovenia | 0.245 | 0.981 | 1.226 | Good |
20 | Hungary | 0.199 | 0.990 | 1.189 | Modest |
21 | Bulgaria | 0.277 | 0.902 | 1.179 | Poor |
22 | Belgium | 0.218 | 0.950 | 1.168 | Modest |
23 | Denmark | 0.234 | 0.900 | 1.134 | Good |
24 | Lithuania | 0.106 | 0.970 | 1.076 | Modest |
25 | Austria | 0.158 | 0.880 | 1.038 | Good |
26 | Estonia | 0.062 | 0.970 | 1.032 | Modest |
27 | Czech Republic | 0.107 | 0.920 | 1.027 | Good |
28 | Slovakia | 0.333 | 0.540 | 0.873 | Good |
29 | Croatia | 0.074 | 0.760 | 0.834 | Modest |
30 | Cyprus | 0.088 | 0.570 | 0.658 | Poor |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taboada, G.L.; Seruca, I.; Sousa, C.; Pereira, Á. Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area. Sustainability 2020, 12, 4995. https://doi.org/10.3390/su12124995
Taboada GL, Seruca I, Sousa C, Pereira Á. Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area. Sustainability. 2020; 12(12):4995. https://doi.org/10.3390/su12124995
Chicago/Turabian StyleTaboada, Guillermo L., Isabel Seruca, Cristina Sousa, and Ángeles Pereira. 2020. "Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area" Sustainability 12, no. 12: 4995. https://doi.org/10.3390/su12124995
APA StyleTaboada, G. L., Seruca, I., Sousa, C., & Pereira, Á. (2020). Exploratory Data Analysis and Data Envelopment Analysis of Construction and Demolition Waste Management in the European Economic Area. Sustainability, 12(12), 4995. https://doi.org/10.3390/su12124995