An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Constructing and Deploying the HCMR Artificial Reefs
2.3. Creating the Computational Grid for 3-D Demonstration and Computational Fluid Dynamics (CFD) Analysis
3. Results
3.1. Monitoring of the Deployed AR
3.2. Computational Fluid Dynamics (CFD) Simulation of a Single AR Unit
3.3. Computational Fluid Dynamics (CFD) Simulation of an Artificial Reef (AR) cluster
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Parliament. The Impact of Tourism on Coastal Areas: Regional Development Aspects, Study of Policy Department B: Structural and Cohesion Policies; European Parliament: Brussels, Belgium, 2008. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture. Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Ishizu, M.; Miyazawa, Y.; Tsunoda, T.; Guo, X. Development of a Biogeochemical and Carbon Model Related to Ocean Acidification Indices with an Operational Ocean Model Product in the North Western Pacific. Sustainability 2019, 11, 2677. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, J.A.; Fulton, E.A.; Johnson, C.R.; Haward, M. How to Sustain Fisheries: Expert Knowledge from 34 Nations. Water 2019, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Vergés, A.; Steinberg, P.D.; Hay, M.E.; Poore, A.G.B.; Campbell, A.H.; Ballesteros, E.; Heck, K.L.; Booth, D.J.; Coleman, M.A.; Feary, D.A.; et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 2014, 281, 20140846. [Google Scholar] [CrossRef] [PubMed]
- Wongthong, P.; Harvey, N. Integrated coastal management and sustainable tourism: A case study of the reef-based SCUBA dive industry from Thailand. Ocean Coast. Manag. 2014, 95, 138–146. [Google Scholar] [CrossRef]
- Mitsch, W.J. When will ecologists learn engineering and engineers learn ecology? Ecol. Eng. 2014, 65, 9–14. [Google Scholar] [CrossRef]
- International Maritime Organization. Guidelines for the Placement of Artificial Reefs: London Convention and Protocol/UNEPI; International Maritime Organization: London, UK, 2009. [Google Scholar]
- Wetzel, M.A.; Scholle, J.; Teschke, K. Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem. Mar. Environ. Res. 2014, 99, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ido, S.; Shimrit, P.-F. Blue is the new green—Ecological enhancement of concrete based coastal and marine infrastructure. Ecol. Eng. 2015, 84, 260–272. [Google Scholar] [CrossRef]
- Noh, J.; Ryu, J.; Lee, D.; Khim, J.S. Distribution characteristics of the fish assemblages to varying environmental conditions in artificial reefs of the Jeju Island, Korea. Mar. Pollut. Bull. 2017, 118, 388–396. [Google Scholar] [CrossRef]
- Dos Santos, L.N.; Brotto, D.S.; Zalmon, I.R. Fish responses to increasing distance from artificial reefs on the Southeastern Brazilian Coast. J. Exp. Mar. Biol. Ecol. 2010, 386, 54–60. [Google Scholar] [CrossRef]
- Cardoso, A.P.L.R.; Matos, M.R.S.B.C.; Rosa, R.S.; Alvarado, F.; Medeiros, A.P.M.; Santos, B.A. Increased fish diversity over day and night in structurally complex habitats of artificial reefs. J. Exp. Mar. Biol. Ecol. 2020, 522, 151244. [Google Scholar] [CrossRef]
- Komyakova, V.; Swearer, S.E. Contrasting patterns in habitat selection and recruitment of temperate reef fishes among natural and artificial reefs. Mar. Environ. Res. 2019, 143, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Pickering, H.; Whitmarsh, D. Artificial reefs and fisheries exploitation: A review of the ‘attraction versus production’ debate, the influence of design and its significance for policy. Fish. Res. 1997, 31, 39–59. [Google Scholar] [CrossRef]
- Abecasis, D.; Bentes, L.; Lino, P.G.; Santos, M.N.; Erzini, K. Residency, movements and habitat use of adult white seabream (Diplodus sargus) between natural and artificial reefs. Estuar. Coast. Shelf Sci. 2013, 118, 80–85. [Google Scholar] [CrossRef]
- Paxton, A.B.; Revels, L.W.; Rosemond, R.C.; Van Hoeck, R.V.; Lemoine, H.R.; Taylor, J.C.; Peterson, C.H. Convergence of fish community structure between a newly deployed and an established artificial reef along a five-month trajectory. Ecol. Eng. 2018, 123, 185–192. [Google Scholar] [CrossRef]
- Smith, J.A.; Lowry, M.B.; Suthers, I.M. Fish attraction to artificial reefs not always harmful: A simulation study. Ecol. Evol. 2015, 5, 4590–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajemian, M.J.; Wetz, J.J.; Shipley-Lozano, B.; Shively, J.D.; Stunz, G.W. An Analysis of Artificial Reef Fish Community Structure along the Northwestern Gulf of Mexico Shelf: Potential Impacts of “Rigs-to-Reefs” Programs. PLoS ONE 2015, 10, e0126354. [Google Scholar] [CrossRef]
- Polovina, J.J.; Sakai, I. Impacts of Artificial Reefs on Fishery Production in Shimamaki, Japan. Bull. Mar. Sci. 1989, 44, 8. [Google Scholar]
- Cenci, E.; Pizzolon, M.; Chimento, N.; Mazzoldi, C. The influence of a new artificial structure on fish assemblages of adjacent hard substrata. Estuar. Coast. Shelf Sci. 2011, 91, 133–149. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Ladle, R.J.; Bouma, T.J.; Todd, P.A. Creating complex habitats for restoration and reconciliation. Ecol. Eng. 2015, 77, 307–313. [Google Scholar] [CrossRef]
- Moschella, P.S.; Abbiati, M.; Åberg, P.; Airoldi, L.; Anderson, J.M.; Bacchiocchi, F.; Bulleri, F.; Dinesen, G.E.; Frost, M.; Gacia, E.; et al. Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coast. Eng. 2005, 52, 1053–1071. [Google Scholar] [CrossRef]
- Langhamer, O. Artificial Reef Effect in relation to Offshore Renewable Energy Conversion: State of the Art. Sci. World J. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Riera, E.; Lamy, D.; Goulard, C.; Francour, P.; Hubas, C. Biofilm monitoring as a tool to assess the efficiency of artificial reefs as substrates: Toward 3D printed reefs. Ecol. Eng. 2018, 120, 230–237. [Google Scholar] [CrossRef]
- Blakeway, D.; Byers, M.; Stoddart, J.; Rossendell, J. Coral Colonisation of an Artificial Reef in a Turbid Nearshore Environment, Dampier Harbour, Western Australia. PLoS ONE 2013, 8, e75281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.S.L.; Lim, S.C.; Ong, J.Y.; Teo, L.M.S.; Chou, L.M.; Chua, K.E.; Tan, K.S. Enhancing the biodiversity of coastal defence structures: Transplantation of nursery-reared reef biota onto intertidal seawalls. Ecol. Eng. 2015, 82, 480–486. [Google Scholar] [CrossRef]
- Layman, C.A.; Allgeier, J.E.; Montaña, C.G. Mechanistic evidence of enhanced production on artificial reefs: A case study in a Bahamian seagrass ecosystem. Ecol. Eng. 2016, 95, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Perkol-Finkel, S.; Shashar, N.; Benayahu, Y. Can artificial reefs mimic natural reef communities? The roles of structural features and age. Mar. Environ. Res. 2006, 61, 121–135. [Google Scholar] [CrossRef]
- Wu, Z.; Tweedley, J.R.; Loneragan, N.R.; Zhang, X. Artificial reefs can mimic natural habitats for fish and macroinvertebrates in temperate coastal waters of the Yellow Sea. Ecol. Eng. 2019, 139, 105579. [Google Scholar] [CrossRef]
- Van Treeck, P.; Schuhmacher, H. Mass Diving Tourism – A New Dimension Calls for New Management Approaches. Mar. Pollut. Bull. 1999, 37, 499–504. [Google Scholar] [CrossRef]
- Zakai, D.; Chadwick-Furman, N.E. Impacts of intensive recreational diving on reef corals at Eilat, northern Red Sea. Biol. Conserv. 2002, 105, 179–187. [Google Scholar] [CrossRef]
- Terrón-Sigler, A.; León-Muez, D.; Peñalver-Duque, P.; Torre, F.E. The effects of SCUBA diving on the endemic Mediterranean coral Astroides calycularis. Ocean Coast. Manag. 2016, 122, 1–8. [Google Scholar] [CrossRef]
- Toyoshima, J.; Nadaoka, K. Importance of environmental briefing and buoyancy control on reducing negative impacts of SCUBA diving on coral reefs. Ocean Coast. Manag. 2015, 116, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Kirkbride-Smith, A.E.; Wheeler, P.M.; Johnson, M.L. The relationship between diver experience levels and perceptions of attractiveness of artificial reefs—Examination of a potential management tool. PLoS ONE 2013, 8, e68899. [Google Scholar] [CrossRef] [PubMed]
- Belhassen, Y.; Rousseau, M.; Tynyakov, J.; Shashar, N. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service. J. Environ. Manag. 2017, 203, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Polak, O.; Shashar, N. Can a small artificial reef reduce diving pressure from a natural coral reef? Lessons learned from Eilat, Red Sea. Ocean Coast. Manag. 2012, 55, 94–100. [Google Scholar] [CrossRef]
- Tynyakov, J.; Rousseau, M.; Chen, M.; Figus, O.; Belhassen, Y.; Shashar, N. Artificial reefs as a means of spreading diving pressure in a coral reef environment. Ocean Coast. Manag. 2017, 149, 159–164. [Google Scholar] [CrossRef]
- Nakamura, M. Evolution of Artificial Fishing Reef Concepts in Japan. 8. Bull. Mar. Sci. 1985, 37, 271–278. [Google Scholar]
- Baine, M. Artificial reefs: A review of their design, application, management and performance. Ocean Coast. Manag. 2001, 44, 241–259. [Google Scholar] [CrossRef]
- Pitcher, T.J.; Seaman Jr, W. Petrarch’s Principle: How protected human-made reefs can help the reconstruction of fisheries and marine ecosystems. Fish Fish. 2000, 1, 73–81. [Google Scholar] [CrossRef]
- Lima, J.S.; Zalmon, I.R.; Love, M. Overview and trends of ecological and socioeconomic research on artificial reefs. Mar. Environ. Res. 2019, 145, 81–96. [Google Scholar] [CrossRef]
- Dafforn, K.A.; Mayer-Pinto, M.; Morris, R.L.; Waltham, N.J. Application of management tools to integrate ecological principles with the design of marine infrastructure. J. Environ. Manag. 2015, 158, 61–73. [Google Scholar] [CrossRef]
- Ruiz-Frau, A.; Possingham, H.P.; Edwards-Jones, G.; Klein, C.J.; Segan, D.; Kaiser, M.J. A multidisciplinary approach in the design of marine protected areas: Integration of science and stakeholder based methods. Ocean Coast. Manag. 2015, 103, 86–93. [Google Scholar] [CrossRef]
- Naylor, L.A.; Coombes, M.A.; Venn, O.; Roast, S.D.; Thompson, R.C. Facilitating ecological enhancement of coastal infrastructure: The role of policy, people and planning. Environ. Sci. Policy 2012, 22, 36–46. [Google Scholar] [CrossRef]
- Claudet, J.; Pelletier, D. Marine protected areas and artificial reefs: A review of the interactions between management and scientific studies. Aquat. Living Resour. 2004, 17, 129–138. [Google Scholar] [CrossRef]
- Lai, S.; Loke, L.H.L.; Hilton, M.J.; Bouma, T.J.; Todd, P.A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 2015, 103, 78–85. [Google Scholar] [CrossRef]
- Tan, W.-J.; Yang, C.-F.; Château, P.-A.; Lee, M.-T.; Chang, Y.-C. Integrated coastal-zone management for sustainable tourism using a decision support system based on system dynamics: A case study of Cijin, Kaohsiung, Taiwan. Ocean Coast. Manag. 2018, 153, 131–139. [Google Scholar] [CrossRef]
- Perkol-Finkel, S.; Hadary, T.; Rella, A.; Shirazi, R.; Sella, I. Seascape architecture—Incorporating ecological considerations in design of coastal and marine infrastructure. Ecol. Eng. 2018, 120, 645–654. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, L.; Zang, Z. Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coast. Eng. 2010, 57, 709–721. [Google Scholar] [CrossRef]
- Yun, D.-H.; Kim, Y.-T. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotext. Geomembr. 2018, 46, 448–454. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, C.G.; Na, W.B.; Kim, J.K. Chemical degradation characteristics of reinforced concrete reefs in South Korea. Ocean Eng. 2008, 35, 738–748. [Google Scholar] [CrossRef]
- Xu, Q.; Ji, T.; Yang, Z.; Ye, Y. Steel rebar corrosion in artificial reef concrete with sulphoaluminate cement, sea water and marine sand. Constr. Build. Mater. 2019, 227, 116685. [Google Scholar] [CrossRef]
- Liu, Z.; He, X.; Fan, J.; Zhou, C. Study on the Softening Mechanism and Control of Red-Bed Soft Rock under Seawater Conditions. JMSE 2019, 7, 235. [Google Scholar] [CrossRef] [Green Version]
- Düzbastılar, F.O.; Şentürk, U. Determining the weights of two types of artificial reefs required to resist wave action in different water depths and bottom slopes. Ocean Eng. 2009, 36, 900–913. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Turner, I.L. Shoreline response to submerged structures: A review. Coast. Eng. 2006, 53, 65–79. [Google Scholar] [CrossRef]
- Kim, D.; Woo, J.; Yoon, H.-S.; Na, W.-B. Efficiency, tranquillity and stability indices to evaluate performance in the artificial reef wake region. Ocean Eng. 2016, 122, 253–261. [Google Scholar] [CrossRef]
- Woo, J.; Kim, D.; Yoon, H.-S.; Na, W.-B. Characterizing Korean general artificial reefs by drag coefficients. Ocean Eng. 2014, 82, 105–114. [Google Scholar] [CrossRef]
- Wang, G.; Wan, R.; Wang, X.; Zhao, F.; Lan, X.; Cheng, H.; Tang, W.; Guan, Q. Study on the influence of cut-opening ratio, cut-opening shape, and cut-opening number on the flow field of a cubic artificial reef. Ocean Eng. 2018, 162, 341–352. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, G.; Zhao, Y.; Guan, C.; Li, Y. The Investigation of the Hydrodynamics of an Artificial Reef. In Aquaculture and the Environment—A Shared Destiny; Sladonja, B., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-749-9. [Google Scholar]
- Liu, Y.; Zhao, Y.; Dong, G.; Guan, C.; Cui, Y.; Xu, T.-J. A study of the flow field characteristics around star-shaped artificial reefs. J. Fluids Struct. 2013, 39, 27–40. [Google Scholar] [CrossRef]
- Jiang, Z.; Liang, Z.; Zhu, L.; Liu, Y. Numerical simulation of effect of guide plate on flow field of artificial reef. Ocean Eng. 2016, 116, 236–241. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Kim, D.; Na, W.-B. Estimation of effective usable and burial volumes of artificial reefs and the prediction of cost-effective management. Ocean Coast. Manag. 2016, 120, 135–147. [Google Scholar] [CrossRef]
- Zhen-qing, M. Effects of water-depth on hydrodynamic force of artificial reef. J. Hydrodyn. 2007, 19, 372–377. [Google Scholar]
- Liu, T.-L.; Su, D.-T. Numerical analysis of the influence of reef arrangements on artificial reef flow fields. Ocean Eng. 2013, 74, 81–89. [Google Scholar] [CrossRef]
- Sous, D. A Numerical Assessment of Artificial Reef Pass Wave-Induced Currents as a Renewable Energy Source. JMSE 2019, 7, 284. [Google Scholar] [CrossRef] [Green Version]
- Hsui, C.-Y.; Wang, C.-C. Synergy between fractal dimension and lacunarity index in design of artificial habitat for alternative SCUBA diving site. Ecol. Eng. 2013, 53, 6–14. [Google Scholar] [CrossRef]
- Coombes, M.A.; La Marca, E.C.; Naylor, L.A.; Thompson, R.C. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures. Ecol. Eng. 2015, 77, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Dounas, C.; HCMR. Artificial Reef for Recreational Diving. European Patent No. 3374569; European Patent Office, 25 December 2019. [Google Scholar]
- Seaman, W. (Ed.) Artificial Reef Evaluation: With Application to Natural Marine Habitats; Marine science series; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-8493-9061-6. [Google Scholar]
- Gerovasileiou, V.; Akel, E.K.; Akyol, O.K.A.N.; Alongi, G.; Azevedo, F.; Babali, N.; Bakiu, R.; Bariche, M.; Bennoui, A.; Castriota, L.; et al. New Mediterranean Biodiversity Records. Medit. Mar. Sci. 2017, 18, 355–384. [Google Scholar] [CrossRef] [Green Version]
- Zenetos, A.; Corsini-Foka, M.; Crocetta, F.; Gerovasileiou, V.; Karachle, P.; Simboura, N.; Tsiamis, K.; Pancucci-Papadopoulou, M.-A. Deep cleaning of alien and cryptogenic species records in the Greek Seas (2018 update). MBI 2018, 9, 209–226. [Google Scholar] [CrossRef] [Green Version]
- Negrotti, M. Naturoids: On the Nature of the Artificial; World Scientific: Singapore, 2002; pp. 90–93. ISBN 978-981-02-4932-8. [Google Scholar]
- ANSYS Inc. FLUENT Tutorial Guide; Release 14.0; ANSYS Inc.: Canonsburg, PA, USA, 2011. [Google Scholar]
- Rallis, I.; Sedano, F.; Capilla, M.F.; Chatzigeorgiou, G.; Dailianis, T.; Tsiamis, K.; Dounas, C.; Gkelis, S.; Gerovasileiou, V. Baseline survey of sessile benthos on artificial reefs deployed in the Underwater Biotechnological Park of Crete: Preliminary results. In Proceedings of the 12th Panhellenic Symposium of Oceanography & Fisheries, Corfu, Greece, 30 May–3 June 2018. [Google Scholar] [CrossRef]
- Seidelin, L.; Wahlberg, M.; Holmer, M. Using Live-Stream Video from an Artificial Reef to Increase Interest in Marine Biology. JMSE 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Caddy, J.F.; Stamatopoulos, C. Mapping growth and mortality rates of crevice-dwelling organisms onto a perforated surface: The relevance of ‘cover’ to the carrying capacity of natural and artificial habitats. Estuar. Coast. Shelf Sci. 1990, 31, 87–106. [Google Scholar] [CrossRef]
- The Underwater Biotechnological Park of Crete. Available online: http://ubpcrete.hcmr.gr/index.php/experimental-aquaculture (accessed on 22 April 2020).
- Androulakis, D.N.; Banks, A.C.; Dounas, C.; Margaris, D.P. An Evaluation of Autonomous In Situ Temperature Loggers in a Coastal Region of the Eastern Mediterranean Sea for Use in the Validation of Near-Shore Satellite Sea Surface Temperature Measurements. Remote Sens. 2020, 12, 1140. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androulakis, D.N.; Dounas, C.G.; Banks, A.C.; Magoulas, A.N.; Margaris, D.P. An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete. Sustainability 2020, 12, 4847. https://doi.org/10.3390/su12124847
Androulakis DN, Dounas CG, Banks AC, Magoulas AN, Margaris DP. An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete. Sustainability. 2020; 12(12):4847. https://doi.org/10.3390/su12124847
Chicago/Turabian StyleAndroulakis, Dimitrios N., Costas G. Dounas, Andrew Clive Banks, Antonios N. Magoulas, and Dionissios P. Margaris. 2020. "An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete" Sustainability 12, no. 12: 4847. https://doi.org/10.3390/su12124847
APA StyleAndroulakis, D. N., Dounas, C. G., Banks, A. C., Magoulas, A. N., & Margaris, D. P. (2020). An Assessment of Computational Fluid Dynamics as a Tool to Aid the Design of the HCMR-Artificial-ReefsTM Diving Oasis in the Underwater Biotechnological Park of Crete. Sustainability, 12(12), 4847. https://doi.org/10.3390/su12124847