Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Urban Vibrancy
1.2.2. Urban Morphology and Vibrancy
1.3. The Present Study
2. Data
2.1. Mobile Phone Data
2.2. Neighborhood Morphological Data
3. Methodology
3.1. Proposition of the Formality-Functionality Model
3.2. Geographically and Temporally Weighted Regression (GTWR)
3.3. Geographical Detectors (GDs)
4. Results and Discussion
4.1. Results of the GTWR Model
4.1.1. Model Comparison
4.1.2. Spatial Variability of Coefficients
4.1.3. Temporal Variability of Coefficients
4.2. Results of the GD Model
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UNDESA. World Urbanization Prospects 2018: Highlights; United Nations, Department of Economic and Social Affairs, Population Division. Available online: https://population.un.org/wup/Publications/ (accessed on 11 June 2020).
- Krueger, R.; Buckingham, S. Towards a ‘consensual’ urban politics? Creative planning, urban sustainability and regional development. Int. J. Urban Reg. Res. 2012, 36, 486–503. [Google Scholar] [CrossRef]
- Montgomery, J. Making a city: Urbanity, vitality and urban design. J. Urban Des. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Landry, B. Race, Gender and Class: Theory and Methods of Analysis; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Dale, A.; Ling, C.; Newman, L. Community vitality: The role of community-level resilience adaptation and innovation in sustainable development. Sustainability 2010, 2, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shen, Z.; Hao, X. Revealing the relationship between spatio-temporal distribution of population and urban function with social media data. GeoJournal 2016, 81, 919–935. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Van Lenthe, F.J.; Brug, J.; Mackenbach, J.P. Neighborhood inequalities in physical inactivity: The role of neighborhood attractiveness, proximity to local facilities and safety in The Netherlands. Soc. Sci. Med. 2005, 60, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Long, Y.; Sun, W.; Lu, Y.; Yang, X.; Tang, J. Evaluating cities’ vitality and identifying ghost cities in China with emerging geographical data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Krier, L. The Architecture of Community; Island Press: Washington, DC, USA, 2009. [Google Scholar]
- Brenner, N. Implosions/Explosions: Towards a Study of Planetary Urbanization; Jovis: Berlin, Germany, 2014. [Google Scholar]
- Woodworth, M.D.; Wallace, J.L. Seeing ghosts: Parsing China’s “ghost city” controversy. Urban Geogr. 2017, 38, 1270–1281. [Google Scholar] [CrossRef]
- Oliveira, V.; Medeiros, V. Morpho: Combining morphological measures. Environ. Plan. Plan. Des. 2016, 43, 805–825. [Google Scholar] [CrossRef]
- Ye, Y.; Yeh, A.; Zhuang, Y.; Van Nes, A.; Liu, J. “Form syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design. Urban Des. Int. 2017, 22, 73–90. [Google Scholar] [CrossRef]
- Ravenscroft, N. The vitality and viability of town centres. Urban Stud. 2000, 37, 2533–2549. [Google Scholar] [CrossRef]
- Zarin, S.Z.; Niroomand, M.; Heidari, A.A. Physical and social aspects of vitality case study: Traditional street and modern street in Tehran. Procedia Soc. Behav. Sci. 2015, 170, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Conzen, M.R.G. Alnwick, Northumberland: A study in town-plan analysis. Trans. Pap. (Inst. Br. Geogr.) 1960, 27, 1–122. [Google Scholar] [CrossRef]
- Conzen, M.P. The study of urban form in the United States. Urban Morphol. 2001, 5, 3–14. [Google Scholar]
- Maas, P.R. Towards a Theory of Urban Vitality; University of British Columbia: Vancouver, BC, Canada, 1984. [Google Scholar]
- Nicodemus, A.G. Fuzzy vibrancy: Creative placemaking as ascendant US cultural policy. Cult. Trends 2013, 22, 213–222. [Google Scholar] [CrossRef]
- Winters, M.; Brauer, M.; Setton, E.M.; Teschke, K. Built environment influences on healthy transportation choices: Bicycling versus driving. J. Urban Health 2010, 87, 969–993. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.J.; Seifert, S.C. Cultural clusters: The implications of cultural assets agglomeration for neighborhood revitalization. J. Plan. Educ. Res. 2010, 29, 262–279. [Google Scholar] [CrossRef]
- Braun, L.M.; Malizia, E. Downtown vibrancy influences public health and safety outcomes in urban counties. J. Transp. Health 2015, 2, 540–548. [Google Scholar] [CrossRef]
- Barreca, A.; Curto, R.; Rolando, D. Urban Vibrancy: An Emerging Factor that Spatially Influences the Real Estate Market. Sustainability 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- De Nadai, M.; Staiano, J.; Larcher, R.; Sebe, N.; Quercia, D.; Lepri, B. The Death and Life of Great Italian Cities: A Mobile Phone Data Perspective. In Proceedings of the International World Wide Web Conferences Steering Committee, Montréal, QC, Canada, 11–15 April 2016; pp. 413–423. [Google Scholar]
- Yue, Y.; Zhuang, Y.; Yeh, A.G.O.; Xie, J.-Y.; Ma, C.-L.; Li, Q.-Q. Measurements of POI-based mixed use and their relationships with neighborhood vibrancy. Int. J. Geogr. Inf. Sci. 2017, 31, 658–675. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Ta, N.; Song, Y.; Lin, J.; Chai, Y. Urban form breeds neighborhood vibrancy: A case study using a GPS-based activity survey in suburban Beijing. Cities 2018, 74, 100–108. [Google Scholar] [CrossRef]
- Long, Y.; Huang, C. Does block size matter? The impact of urban design on economic vitality for Chinese cities. Environ. Plan. Urban Anal. City Sci. 2019, 46, 406–422. [Google Scholar] [CrossRef] [Green Version]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using mobility data as proxy for measuring urban vitality. J. Spat. Inf. Sci. 2018, 16, 137–162. [Google Scholar] [CrossRef]
- Kim, Y.-L. Seoul’s Wi-Fi hotspots: Wi-Fi access points as an indicator of urban vitality. Comput. Environ. Urban Syst. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Ye, Y.; Li, D.; Liu, X. How block density and typology affect urban vitality: An exploratory analysis in Shenzhen, China. Urban Geogr. 2018, 39, 631–652. [Google Scholar] [CrossRef]
- Larkham, P.J.; Jones, A.N. A Glossary of Urban Form; Institute of British Geographers: London, UK, 1991. [Google Scholar]
- Oliveira, V. Urban Morphology: An Introduction to the Study of the Physical Form of Cities; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Meng, Y.; Xing, H. Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data. Cities 2019, 95, 102389. [Google Scholar] [CrossRef]
- Zhang, A.; Li, W.; Wu, J.; Lin, J.; Chu, J.; Xia, C. How can the urban landscape affect urban vitality at the street block level? A case study of 15 metropolises in China. Environ. Plan. 2020. [Google Scholar] [CrossRef]
- Katz, P.; Scully, V.J.; Bressi, T.W. The New Urbanism: Toward an Architecture of Community; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Gehl, J. New City Spaces; Danish Architectural Press: Copenhagen, Denmark, 2000. [Google Scholar]
- Smith, T.; Nelischer, M.; Perkins, N. Quality of an urban community: A framework for understanding the relationship between quality and physical form. Landsc. Urban Plan. 1997, 39, 229–241. [Google Scholar] [CrossRef]
- Cybriwsky, R. Changing patterns of urban public space: Observations and assessments from the Tokyo and New York metropolitan areas. Cities 1999, 16, 223–231. [Google Scholar] [CrossRef]
- Filion, P.; Hammond, K. Neighbourhood land use and performance: The evolution of neighbourhood morphology over the 20th century. Environ. Urban Plan. Plan. Des. 2003, 30, 271–296. [Google Scholar] [CrossRef]
- Sung, H.; Go, D.; Choi, C. Evidence of Jacobs’s street life in the great Seoul city: Identifying the association of physical environment with walking activity on streets. Cities 2013, 35, 164–173. [Google Scholar] [CrossRef]
- Kooshki, F.; Mollatabar, A.; Masumi, L. The local community planning (case study: Narmak neighborhood of Tehran). Int. J. Acad. Res. Bus. Soc. Sci. 2015, 5, 171–178. [Google Scholar] [CrossRef]
- Zeng, C.; Song, Y.; He, Q.; Shen, F. Spatially explicit assessment on urban vitality: Case studies in Chicago and Wuhan. Sustain. Cities Soc. 2018, 40, 296–306. [Google Scholar] [CrossRef]
- Mouratidis, K. Built environment and social well-being: How does urban form affect social life and personal relationships? Cities 2018, 74, 7–20. [Google Scholar] [CrossRef]
- Delclòs-Alióa, X.; Gutiérrezc, A.; Miralles-Guasch, C. The urban vitality conditions of Jane Jacobs in Barcelona: Residential and smartphone-based tracking measurements of the built environment in a Mediterranean metropolis. Cities 2019, 86, 220–228. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.O.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Goodchild, M.F. Prospects for a space-time GIS. Annu. Assoc. Am. Geogr. 2013, 103, 1072–1077. [Google Scholar] [CrossRef]
- Sung, H.; Lee, S.; Cheon, S.H. Operationalizing Jane Jacobs’s Urban Design Theory: Empirical Verification from the Great City of Seoul, Korea. J. Plan. Educ. Res. 2015, 35, 117–130. [Google Scholar] [CrossRef]
- Wu, W.; Niu, X. Influence of Built Environment on Urban Vitality: Case Study of Shanghai Using Mobile Phone Location Data. J. Urban Plan. Dev. 2019, 145, 04019007. [Google Scholar] [CrossRef]
- Tang, L.; Lin, Y.; Li, S.; Li, S.; Li, J.; Ren, F.; Wu, C. Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data. Sustainability 2018, 10, 4565. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Shi, C.; Yang, X. Impacts of Built Environment on Urban Vitality: Regression Analyses of Beijing and Chengdu, China. Int. J. Environ. Res. Public Health 2019, 16, 4592. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Jiao, H.; Yu, Y.; Li, Z.; Peng, Z.; Liu, L.; Zeng, Z. Influence Factors and Regression Model of Urban Housing Prices Based on Internet Open Access Data. Sustainability 2018, 10, 1676. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; He, Q.; Zhou, K.; Xie, P. The effect of new metro stations on local land use and housing prices: The case of Wuhan, China. J. Transp. Geogr. 2019, 79, 102488. [Google Scholar] [CrossRef]
- Hillier, W.R.G.; Yang, T.; Turner, A. Advancing DepthMap to advance our understanding of cities: Comparing streets and cities and streets with cities. In Proceedings of the Eighth International Space Syntax Symposium, Santiago, Chile, 3–6 January 2012. [Google Scholar]
- Hillier, B. Spatial Sustainability in Cities: Organic Patterns and Sustainable Forms; Royal Institute of Technology (KTH): Stockholm, Sweden, 2009. [Google Scholar]
- Chiaradia, A.; Hillier, B.; Schwander, C.; Barnes, Y. Compositional and urban form effects on residential property value patterns in Greater London. Proc. Inst. Civ. Eng. Urban Des. Plan. 2013, 166, 176–199. [Google Scholar] [CrossRef]
- Yang, T.; Li, M.; Shen, Z. Between morphology and function: How syntactic centers of the Beijing city are defined. J. Urban Manag. 2015, 4, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Stonor, T. Measuring Intensity–Describing and Analysing the “Urban Buzz”. Iconarp Int. J. Archit. Plan. 2015, 7, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.; Hillier, B. Angular and metric distance in road network analysis: A nationwide correlation study. Comput. Environ. Urban Syst. 2019, 74, 194–207. [Google Scholar] [CrossRef]
- Shen, Y.; Karimi, K.; Law, S.; Zhong, C. Physical co-presence intensity: Measuring dynamic face-to-face interaction potential in public space using social media check-in records. PLoS ONE 2019, 14, e0212004. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B.; Iida, S. Network and psychological effects in urban movement. In International Conference on Spatial Information Theory; Springer: Berlin/Heidelberg Germany, 2005; pp. 475–490. [Google Scholar]
- Turner, A. Angular analysis. In Proceedings of the 3rd International Symposium on Space Syntax; Georgia Institute of Technology: Atlanta, GA, USA, May 2001; pp. 30.1–30.11. [Google Scholar]
- Moudon, A.V.; Lee, C.; Cheadle, A.D.; Garvin, C.; Johnson, D.; Schmid, T.L.; Lin, L. Operational definitions of walkable neighborhood: Theoretical and empirical insights. J. Phys. Act. Health 2006, 3, S99–S117. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Wu, C.; Ren, F.; Hu, W.; Du, Q. Multiscale geographically and temporally weighted regression: Exploring the spatiotemporal determinants of housing prices. Int. J. Geogr. Inf. Sci. 2019, 33, 489–511. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors—Based Health Risk Assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
Dimension | Component | Index (Abbreviation) | Explanation of Index/Calculation Method |
---|---|---|---|
Formal Characteristics | Road | Density of road length (DRL) | The total length of roads divided by the area of each neighborhood. |
Angular integration and choice of roads (INCH) | Integration is the reciprocal of the mean angular depth () from segment i to all the reachable segments j within a given radius r. Choice is the number of times () that the focused segment i has been passed through in the angular shortest paths from segment j to k within a given radius r. | ||
Building | Building area ratio (BuAR) | The total spatial construction area divided by the area of the neighborhood; the higher the ratio, the higher the intensity. | |
Building cover ratio (BuCR) | The total of buildings divided by the area of each neighborhood; the higher the ratio, the higher the density. | ||
Mix building age (MixBuA) | The degree of mixing of building ages using the entropy equation over 40 years (1980–), with every 5 years as an interval. where n is the number of building age categories, and the ith building age category has a relative proportion of . | ||
Block | Density of block number (DBoN) | The total number of blocks divided by the area of each neighborhood. | |
Functional Characteristics | POI | Mix of POIs (MixPOI) | The degree of mixing of POIs in 5 categories using the entropy equation: where n is the number of POI categories, and the ith POI category has a relative proportion of . |
Density of POIs in the commerce and service category (CSPOI) | The total number of POIs in the commerce and service category divided by the area of each neighborhood. | ||
Density of POIs in the outdoor and recreation category (ORPOI) | The total number of POIs in the outdoor and recreation category divided by the area of each neighborhood. | ||
Density of POIs in the residence category (ResPOI) | The total number of POIs in the residence category divided by the area of each neighborhood. | ||
Density of POIs in the transport category (TraPOI) | The total number of POIs in the transport category divided by the area of each neighborhood. | ||
Density of POIs in the work and education category (WEPOI) | The total number of POIs in the work and education category divided by the area of each neighborhood. |
Dimension | Component | Index | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Formal Characteristics | Road | DRL | 0 | 58.32 | 13.17 | 6.47 |
INCH | 0 | 3623.16 | 1089.02 | 706.53 | ||
Building | BuAR | 0 | 19.1 | 1.5 | 2.6 | |
BuCR | 0 | 0.59 | 0.18 | 0.11 | ||
MixBuA | 0 | 0.84 | 0.18 | 0.25 | ||
Block | DBoN | 0.31 | 50.17 | 11.11 | 6.62 | |
Functional Characteristics | POI | MixPOI | 0 | 1.04 | 0.75 | 0.23 |
CSPOI | 0 | 1567.89 | 159.23 | 198.82 | ||
ORPOI | 0 | 19.72 | 1.13 | 2.11 | ||
ResPOI | 0 | 341.18 | 28.58 | 43.24 | ||
TraPOI | 0 | 1695.23 | 67.11 | 102.63 | ||
WEPOI | 0 | 5751.53 | 175.10 | 409.06 |
Model | Performance | On Weekday | On Weekend |
---|---|---|---|
Spatial autocorrelation | Moran’s I | 0.43 ** (z-score = 23.7) | 0.41 ** (z-score = 22.8) |
Model | Performance | On Weekday | On Weekend |
---|---|---|---|
OLS | 0.655 | 0.659 | |
RSS | 3902 | 5234 | |
AIC | −2593.5 | −2307.0 | |
Moran’s I of residuals | 0.15 ** (z-score = 13.0) | 0.16 ** (z-score = 10.9) | |
GWR | 0.723 | 0.716 | |
RSS | 3597 | 4575 | |
AIC | −2120.3 | −2139.1 | |
Moran’s I of residuals | 0.09 ** (z-score = 3.5) | 0.09 ** (z-score = 2.3) | |
GTWR | 0.957 | 0.955 | |
RSS | 1768 | 967 | |
AIC | −1771.9 | −1891.1 | |
Bandwidth | 0.2117 | 0.2889 | |
Moran’s I of residuals | 0.08 * (z-score = −1.1) | 0.07 * (z-score = −0.2) |
Variable | Avg | Min | Q1 | Q2 | Q3 | Max | Std |
---|---|---|---|---|---|---|---|
Intercept | −0.230 | −19.727 | −0.455 | −0.095 | 0.264 | 11.920 | 1.824 |
DRL | 0.088 | −5.473 | −0.132 | 0.093 | 0.318 | 7.966 | 0.634 |
INCH | 0.112 | −2.227 | −0.168 | 0.008 | 0.187 | 86.913 | 2.622 |
BuAR | 0.076 | −388.176 | −0.392 | 0.042 | 0.674 | 194.092 | 12.382 |
BuCR | 0.213 | −11.668 | 0.029 | 0.211 | 0.385 | 3.576 | 0.555 |
MixBuA | 0.085 | −12.116 | −0.055 | 0.056 | 0.213 | 6.752 | 0.554 |
DBoN | −0.106 | −17.549 | −0.383 | −0.001 | 0.436 | 35.582 | 1.992 |
DivPOI | 0.017 | −2.620 | −0.077 | 0.002 | 0.108 | 11.362 | 0.507 |
CSPOI | 0.267 | −32.354 | −0.174 | 0.199 | 0.606 | 13.327 | 1.320 |
ORPOI | 0.111 | −6.858 | −0.086 | 0.073 | 0.267 | 28.634 | 0.975 |
ResPOI | 0.164 | −15.781 | −0.162 | 0.032 | 0.215 | 150.550 | 4.249 |
TraPOI | 0.199 | −13.908 | −0.119 | 0.175 | 0.523 | 8.021 | 0.955 |
WEPOI | −0.055 | −9.356 | −0.685 | −0.042 | 0.419 | 58.902 | 2.352 |
Variable | Avg | Min | Q1 | Q2 | Q3 | Max | Std |
---|---|---|---|---|---|---|---|
Intercept | −0.211 | −19.750 | −0.428 | −0.060 | 0.272 | 11.343 | 1.867 |
DRL | −0.097 | −3.437 | −0.128 | 0.084 | 0.309 | 6.416 | 0.624 |
INCH | 0.095 | −2.183 | −0.174 | 0.010 | 0.173 | 81.271 | 2.353 |
BuAR | 0.183 | −308.807 | −0.311 | 0.144 | 0.809 | 197.753 | 11.047 |
BuCR | 0.205 | −11.514 | 0.011 | 0.188 | 0.377 | 4.717 | 0.572 |
MixBuA | 0.088 | −12.162 | −0.059 | 0.061 | 0.224 | 7.331 | 0.558 |
DBoN | −0.156 | −19.331 | −0.402 | 0.002 | 0.361 | 35.297 | 2.024 |
MixPOI | 0.013 | −2.776 | −0.078 | 0.005 | 0.100 | 11.404 | 0.515 |
CSPOI | 0.351 | −25.388 | −0.121 | 0.322 | 0.705 | 10.661 | 1.258 |
ORPOI | 0.138 | −4.832 | −0.080 | 0.093 | 0.313 | 22.888 | 0.917 |
ResPOI | 0.180 | −10.799 | −0.152 | 0.049 | 0.228 | 120.600 | 3.723 |
TraPOI | 0.210 | −10.917 | −0.128 | 0.183 | 0.531 | 7.844 | 0.942 |
WEPOI | −0.226 | −9.738 | −0.871 | −0.130 | 0.255 | 84.025 | 3.001 |
Weekdays09−20 | Weekdays21−08 | Weekends | |
---|---|---|---|
| | | |
| ↑↑ | ↑↑ | |
| ↑↑ | ↑↑ | |
| ↑↑ | ↑↑ | |
| | | |
| | | |
| | | |
| ↑↑ | ↑↑ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wu, C.; Lin, Y.; Li, Z.; Du, Q. Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China. Sustainability 2020, 12, 4829. https://doi.org/10.3390/su12124829
Li S, Wu C, Lin Y, Li Z, Du Q. Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China. Sustainability. 2020; 12(12):4829. https://doi.org/10.3390/su12124829
Chicago/Turabian StyleLi, Sijia, Chao Wu, Yu Lin, Zhengyang Li, and Qingyun Du. 2020. "Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China" Sustainability 12, no. 12: 4829. https://doi.org/10.3390/su12124829
APA StyleLi, S., Wu, C., Lin, Y., Li, Z., & Du, Q. (2020). Urban Morphology Promotes Urban Vibrancy from the Spatiotemporal and Synergetic Perspectives: A Case Study Using Multisource Data in Shenzhen, China. Sustainability, 12(12), 4829. https://doi.org/10.3390/su12124829