Spatial Interaction Model for Healthcare Accessibility: What Scale Has to Do with It
Abstract
:1. Introduction
2. Related Literature
3. Methods and Data
3.1. Theoretical Framework
3.2. Data
3.3. Empirical Strategy
3.3.1. Spatial Econometric Models
3.3.2. Geographically Weighted Regression (GWR)
3.3.3. Multilevel Modeling (MLM)
4. Results
Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Moscelli, G.; Siciliani, L.; Gutacker, N.; Cookson, R. Socioeconomic inequality of access to healthcare: Does choice explain the gradient? J. Health Econ. 2018, 57, 290–314. [Google Scholar] [CrossRef] [PubMed]
- de Mello-Sampayo, F. Spatial Interaction Healthcare Accessibility Model—An Application to Texas. Appl. Spat. Anal. Policy 2018, 11, 739–751. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Kordi, M.; Fotheringham, A.S. Spatially weighted interaction models (SWIM). Ann. Am. Assoc. Geogr. 2016, 106, 990–1012. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Subramanian, S.V.; Duncan, C.; Jones, K. Multilevel Perspectives on Modeling Census Data. Environ. Plan. A 2001, 33, 399–417. [Google Scholar] [CrossRef]
- Subramanian, S.V.; Duncan, C.; Jones, K. The Relevance of Multilevel Statistical Methods for Identifying Causal Neighborhood Effects. Soc. Sci. Med. 2004, 58, 1961–1967. [Google Scholar] [CrossRef]
- Shah, T.I.; Bell, S.; Wilson, K. Spatial Accessibility to Health Care Services: Identifying under-Serviced Neighbourhoods in Canadian Urban Areas. PLoS ONE 2016, 11, e0168208. [Google Scholar] [CrossRef]
- Hox, J. Multilevel Modeling: When and Why. In Classification, Data Analysis, and Data Highway; Balderjahn, I., Mathar, R., Schader, M., Eds.; Studies in Classification, Data Analysis, and Knowledge Organization; Springer: Berlin, Heidelberg, 1998; pp. 147–154. [Google Scholar]
- Hox, J. Multilevel Analysis: Techniques and Applications; Erlbaum: Mahwah, NJ, USA, 2002. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An. Introduction to Basic and Advanced Multilevel Modeling, 2nd ed.; Sage: New York, NY, USA, 2012. [Google Scholar]
- Skinner, J. Causes and consequences of regional variations in health care. In Handbook of Health Economics; Elsevier: North Holland, The Netherlands, 2011; Volume 2, pp. 45–93. [Google Scholar]
- Moscone, F.; Knapp, M.; Tosetti, E. Mental health expenditure in England: A spatial panel approach. J. Health Econ. 2007, 26, 842–864. [Google Scholar] [CrossRef]
- Moscone, F.; Knapp, M. Exploring the spatial dimension of mental health expenditure. J. Ment. Health Policy Econ. 2005, 8, 205–217. [Google Scholar]
- Yu, Y.; Zhang, L.; Li, F.; Zheng, X. Strategic interaction and the determinants of public health expenditures in China: A spatial panel perspective. Ann. Reg. Sci. 2013, 50, 203–221. [Google Scholar] [CrossRef]
- Baltagi, B.; Yen, Y. Hospital treatment rates and spillover effects: Does ownership matter? Reg. Sci. Urban. Econ. 2014, 49, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Gravelle, H.; Santos, R.; Siciliani, L. Does a hospital’s quality depend on the quality of other hospitals? A spatial econometrics approach. Reg. Sci. Urban. Econ. 2014, 49, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscone, F.; Skinner, J.; Tosetti, E.; Yasaitis, L. The Association between Medical Care Utilization and Health Outcomes: A Spatial Analysis. Reg. Sci. Urban. Econ. 2019, 77, 306–314. [Google Scholar] [CrossRef]
- Anselin, L. Some robust approaches to testing and estimation in spatial econometrics. Reg. Sci. Urban. Econ. 1990, 20, 141–163. [Google Scholar] [CrossRef]
- Anselin, L.; Florax, R. Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results. In New directions in spatial econometrics; Anselin, L., Florax, R.J.G.M., Eds.; Springer: Berlin, Germany, 1995; pp. 21–74. [Google Scholar]
- Manski, C. Identification of endogenous social effects: The reflection problem. Rev. Econ. Stud. 1993, 60, 531–542. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.; Pace, R. Introduction to Spatial Econometrics; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- McMillen, D. Spatial autocorrelation or model misspecification? Int. Reg. Sci. Rev. 1993, 26, 208–217. [Google Scholar] [CrossRef]
- McClellan, M.; McNeil, B.J.; Newhouse, J.P. Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. JAMA 1994, 272, 859–866. [Google Scholar] [CrossRef]
- Levy, M.; Nir, A.R. The utility of health and wealth. J. Health Econ. 2012, 31, 379–392. [Google Scholar] [CrossRef]
- Finkelstein, A.; Luttmer, E.; Notowidigdo, M. What Good is Wealth Without Health? The Effect of Health on the Marginal Utility of Consumption. J. Eur. Econ. Assoc. 2013, 11, 221–258. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.; Johnson, M.; Austin, M. The Status of Low-Income Neighborhoods in the Post-Welfare Reform Environment: Mapping the Relationship between Poverty and Place. J. Health Soc. Policy 2005, 21, 1–32. [Google Scholar] [CrossRef]
- Braveman, P.; Egerter, S.; Barclay, C. Issue Brief. Series: Exploring the Social Determinants of Health: Income, Wealth and Health; Robert Wood Johnson Foundation: Princeton, NJ, USA, 2011. [Google Scholar]
- Makaroun, L.K.; Brown, R.T.; Diaz-Ramirez, L.G.; Ahalt, C.; Boscardin, W.J.; Lang-Brown, S.; Lee, S. Wealth-Associated Disparities in Death and Disability in the United States and England. JAMA Intern. Med. 2017, 177, 1745–1753. [Google Scholar] [CrossRef]
- Lippi Bruni, M.; Mammi, I. Spatial effects in hospital expenditures: A district level analysis. Health Econ. 2017, 26, 63–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manski, C. The structure of random utility models. Theory Decis. 1977, 8, 229–254. [Google Scholar] [CrossRef]
- McFadden, D. Modelling the Choice of Residential Location. In Spatial Interaction Theory and Planning Models; Karlqvist, A., Lundqvist, L., Snickars, F., Weibull, J., Eds.; North-Holland: Amsterdam, The Netherlands, 1978; pp. 75–96. [Google Scholar]
- McFadden, D. Econometric Models of Probabilistic Choice; Manski, C., McFadden, D., Eds.; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Boyce, D.; Williams, H. Forecasting Urban. Travel: Past, Present and Future; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2015. [Google Scholar]
- Roy, J.O. Spatial Interaction Modelling, A regional Science Context; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004. [Google Scholar]
- Nesbitt, R.C.; Gabrysch, S.; Laub, A.; Soremekun, S.; Manu, A.; Kirkwood, B.R.; Amenga-Etego, S.; Wiru, K.; Höfle, B.; Grundy, C. Methods to measure potential spatial access to delivery care in low- and middle-income countries: A case study in rural Ghana. Int. J. Health Geogr. 2014, 13, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, W. Using a GIS-based floating catchment method to assess areas with shortage of physicians. Health Place 2004, 10, 1–11. [Google Scholar] [CrossRef]
- Luo, W.; Wang, F. Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Luo, W. Assessing spatial and nonspatial factors for healthcare access: Towards an integrated approach to defining health professional shortage areas. Health Place 2005, 11, 131–146. [Google Scholar] [CrossRef]
- Dejen, A.; Soni, S.; Semaw, F. Spatial accessibility analysis of healthcare service centers in Gamo Gofa Zone, Ethiopia through Geospatial technique. Remote Sens. Appl. Soc. Environ. 2019, 13, 66–473. [Google Scholar] [CrossRef]
- Van Dis, J. Where we live: Health care in rural vs urban America. JAMA 2002, 287, 108. [Google Scholar] [CrossRef]
- Wholey, D.; Feldman, R.; Christianson, J.B.; Engberg, J. Scale and scope economies among health maintenance organizations. J. Health Econ. 1996, 15, 657–684. [Google Scholar] [CrossRef]
- OECD. Hospital Discharge rates (Indicator); OECD: Paris, France, 2019. [Google Scholar]
- Carlos, A.; Shi, X.; Sargent, J.; Tanski, S.; Berke, E. Density estimation and adaptive bandwidths: A primer for public health practitioners. Int. J. Health Geogr. 2010, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Grossman, D.; White, K.; Hopkins, K.; Potter, J. How greater travel distance due to clinic closures reduced access to abortion in Texas. PRC Res. Brief. 2017, 2, 2. [Google Scholar]
- Bassuk, E.L.; Buckner, J.C.; Perloff, J.N.; Bassuk, S.S. Prevalence of mental health and substance use disorders among homeless and low-income housed mothers. Am. J. Psychiatry 1998, 155, 1561–1564. [Google Scholar] [CrossRef] [PubMed]
- Khullar, D.; Chokshi, D.A. Health, Income, & Poverty: Where We Are & What Could Help. Health Aff. Health Policy Brief. 4 October 2018. [Google Scholar] [CrossRef]
- Srivastava, D.; McGuire, A. Patient access to health care and medicines across low-income countries. Soc. Sci. Med. 2015, 133, 21–27. [Google Scholar] [CrossRef]
- Huang, Y.; Meyer, P.; Jin, L. Neighborhood socioeconomic characteristics, healthcare spatial access, and emergency department visits for ambulatory care sensitive conditions for elderly. Prev. Med. Rep. 2018, 12, 101–105. [Google Scholar] [CrossRef]
- Mosadeghrad, A. Patient choice of a hospital: Implications for health policy and management. Int. J. Health Care Qual. Assur. 2014, 27, 152–164. [Google Scholar] [CrossRef]
- Cutland, C.L.; Lackritz, E.M.; Mallett-Moore, T.; Bardají, A.; Chandrasekaran, R.; Lahariya, C.; Nisar, M.I.; Tapia, M.B.; Pathirana, J.; Kochhar, S.; et al. Low birth weight: Case definition & guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine 2017, 35, 6492–6500. [Google Scholar] [CrossRef]
- Johnson, C.; Jones, S.; Paranjothy, S. Reducing low birth weight: Prioritizing action to address modifiable risk factors. J. Public Health 2017, 39, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Blanc, A.; Wardlaw, T. Monitoring low birth weight: An evaluation of international estimates and an updated estimation procedure. Bull. World Health Organ. 2005, 83, 178–185. [Google Scholar]
- Waldorf, B.; Chen, S.; Unal, E. A Spatial Analysis of Health Care Accessibility and Health Outcomes in Indiana; Spatial Econometrics Association: Cambridge, UK, 2007. [Google Scholar]
- Shi, L.; Starfield, B. The effect of primary care physician supply and income inequality on mortality among blacks and whites in US metropolitan areas. Am. J. Public Health 2001, 91, 1246–1250. [Google Scholar] [CrossRef]
- Guagliardo, M.F. Spatial accessibility of primary care: Concepts, methods and challenges. Int. J. Health Geogr. 2004, 3, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guagliardo, M.F.; Ronzio, C.R.; Cheung, I.; Chacko, E.; Joseph, J.G. Physician accessibility: An urban case study of pediatric providers. Health Place 2004, 10, 273–283. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Reference List of 100 Core Health Indicators; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Peugh, J. A practical guide to multilevel modeling. J. Sch. Psychol. 2010, 48, 85–112. [Google Scholar] [CrossRef] [PubMed]
- Aguinis, H.; Gottfredson, R.K.; Culpepper, S. BestPractice Recommendations for Estimating Cross-Level Interaction Effects Using Multilevel Modeling. J. Manag. 2013, 39, 1490–1528. [Google Scholar]
- Tobler, W. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 47, 234–240. [Google Scholar] [CrossRef]
- Anselin, L.; Bera, A.; Florax, R.; Yoon, M. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban. Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Billé, A.; Arbia, G. Spatial limited dependent variable models: A review focused on specification estimation, and health economics applications. J. Econ. Surv. 2019, 33, 1531–1554. [Google Scholar] [CrossRef] [Green Version]
- de Mello-Sampayo, F. Spatial heterogeneity of quality, use and spending on medicare for the Elderly. Geospat. Health 2018, 13, 66–78. [Google Scholar] [CrossRef]
- Baltagi, B.; Moscone, F.; Santos, R. Spatial Health Econometrics. In Health Econometrics vol. 294, 13, Contributions to Economic Analysis; Baltagi, B., Moscone, F., Eds.; Emerald Publishing Limited: West Yorkshire, UK, 2018; pp. 305–326. [Google Scholar]
Mean | Standard Deviation | Maximum | Minimum | Moran’s I (c) | Geary’s C (c) | |
---|---|---|---|---|---|---|
Hospital discharges per 1000 Citizens (a) | 5.412 | 7.889 | 55.900 | 0.001 | 0.01 * | 1.122 ** |
Hospital Beds per Population Density (a) | 0.775 | 1.609 | 21.223 | 0.002 | 0.039 *** | 0.503 *** |
Income per capita (thousand dollars) (b) | 48.133 | 8.978 | 67.288 | 31.50 | 0.200 *** | 0.691 *** |
Low Birth Weight per 1000 Citizens (b) | 0.083 | 0.012 | 0.149 | 0.046 | 0.162 *** | 0.615 *** |
OLS | SAR | SER | GWR | |||
---|---|---|---|---|---|---|
Equation (12) | Equation (13) | Equation (14) | Equation (15) | |||
Mean | Min | Max | ||||
Intercept () | 7.468 *** (0.063) | 7.453 *** (0.075) | 7.986 *** (0.325) | 7.350 +++ | 3.560 | 12.231 |
Hospital Service Capacity () | 0.555 *** (0.042) | 0.663 *** (0.057) | 0.548 *** (0.042) | 1.040 +++ | −0.371 (0.4%) | 1.511 |
Income per Capita () | 2.182 *** (0.320) | 2.729 *** (0.405) | 2.141 *** (0.319) | 4.353 +++ | −11.264 (8.1%) | 10.586 |
Low birth weight () | −1.396 *** (0.454) | −1.494 *** (0.491) | −1.387 *** (0.451) | 2.255 +++ | −27.721 (30%) | 15.260 |
Spatial Parameters | ||||||
Lambda () | 0.176 *** (0.056) | |||||
Rho () | −0.70 (0.043) | |||||
Test Statistics | ||||||
Moran’s I | 0.1 *** | 0.332 *** | ||||
Geary’s C | 0.928 ** | 0.665 *** | ||||
Bandwidth | 0.834+++ | |||||
F(3,536) | 59.22 *** | |||||
Robust LM Test | 119.51 *** | 123.60 *** | ||||
-2loglikelihood | 1933.6 | 1923.6 | 1930.6 | |||
AIC | 1941.2 | 1935.6 | 1942.6 | |||
N | 540 | 540 | 540 | 540 |
MLM | Spatial MLM | MLM With Interactions | Spatial MLM With Interactions | |
---|---|---|---|---|
Equation (16) | Equation (17) | |||
Level 1, Hospital Level, 540 Hospitals | ||||
Intercept () | 6.362 *** (0.157) | 6.567 *** (0.144) | 6.387 *** (0.158) | 6.664 *** (0.165) |
Hospital Service Capacity () | 1.119 *** (0.040) | 0.999 *** (0.062) | 1.111 *** (0.041) | 0.976 *** (0.050) |
Level 2, County Level, 256 counties | ||||
Income per Capita () | 3.721 *** (0.732) | 3.451 *** (0.886) | 3.401 *** (0.769) | 2.850 *** (0.738) |
Low birth weight () | −2.308 *** (0.718) | −2.109 *** (0.649) | −1.952 *** (0.964) | −1.383 * (0.818) |
Cross level Interactions | ||||
Hospital Service Capacity * Income per Capita () | 0.210 (0.923) | 0.451 ** (0.243) | ||
Hospital Service Capacity * Low birth weight () | −0.170 (0.356) | −0.351 (0.418) | ||
Variance Components (random effects) | ||||
Intercept () | 1.034 *** (0.171) | 0.880 *** (0.215) | 1.037 *** (0.169) | 0.857 *** (0.212) |
Variance Income per Capita () | 2.627** (1.302) | 2.016 *** (0.950) | 2.557 *** (1,013) | 1.930 *** (0.899) |
Variance Low birth weight () | 2.295 *** (1.001) | 0.001 *** (0.001) | 1.961 (1.492) | 0.000 *** (0.000) |
Residual () | 1.033 *** (0.036) | 1.038 *** (0.056) | 1.036 *** (0.036) | 1.138 *** (0.054) |
Wald Test | 773.37 *** | 339.87 *** | 768.50 *** | 464.96 *** |
-2loglikelihood | 1750.6 | 1178.9 | 1749.3 | 1176.0 |
AIC | 1766.6 | 1193.1 | 1769.3 | 1192.9 |
ICC | 0.500 | 0.500 | 0.500 | 0.500 |
Design Effect | 3.219 | 3.219 | 3.219 | 3.219 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Mello-Sampayo, F. Spatial Interaction Model for Healthcare Accessibility: What Scale Has to Do with It. Sustainability 2020, 12, 4324. https://doi.org/10.3390/su12104324
de Mello-Sampayo F. Spatial Interaction Model for Healthcare Accessibility: What Scale Has to Do with It. Sustainability. 2020; 12(10):4324. https://doi.org/10.3390/su12104324
Chicago/Turabian Stylede Mello-Sampayo, Felipa. 2020. "Spatial Interaction Model for Healthcare Accessibility: What Scale Has to Do with It" Sustainability 12, no. 10: 4324. https://doi.org/10.3390/su12104324
APA Stylede Mello-Sampayo, F. (2020). Spatial Interaction Model for Healthcare Accessibility: What Scale Has to Do with It. Sustainability, 12(10), 4324. https://doi.org/10.3390/su12104324