BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process
Abstract
:1. Introduction
2. State of the Art
2.1. Life Cycle Assessment (LCA)
2.2. Ecolabels
2.3. Assessment Tools
2.4. BIM and Environmental Assessment
2.4.1. Type 1: Exporting Data to External Tools
2.4.2. Type 2: Connecting Quantity Take-Off to External LCA Databases through Integrated Tools
2.4.3. Type 3: Including Environmental Data in the BIM Model
2.4.4. Weaknesses of Other Methods Combining BIM and LCA
2.5. Reliability
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
ACCD Code | Description | U | Quantity | Cost (EUR/U) | CF (tCO2eq/U) | WF (m3water/U) | EE (MJ/U) |
---|---|---|---|---|---|---|---|
15ACW50110 | Ceramic pipe DN 600 | m | 211.39 | 0.278 | 17.2 | 5300 | |
15ACW91110 | Vitrified ceramic pipe 600 mm | m | 1 | 172.52 | 0.2437 | 10.1379 | 4750.6 |
15MMG90210 | Trench-fill with granular material. Manual means | m3 | 0.95 | 16.61 | 0.0241 | 2.5613 | 330.4 |
15MMW90152 | Trench-fill with sand. Mechanical means | m3 | 1.085 | 14.23 | 0.0155 | 0.2735 | 87.1 |
15MZZ90125 | Mechanical trench excavation in urbanized area > 2.50 m | m3 | 2.378 | 4.20 | −0.0079 | 4.2167 | 126.9 |
15MWW00210 | Trench and manhole shoring | m2 | 3.886 | 3.83 | 0.0026 | 0.0106 | 5 |
15APP50145 | Concrete manhole for DN 600 | u | 958 | 1.9337 | 24.4064 | 12,877.9 | |
15MPP90125 | Mechanical excavation in urbanized area > 2.50 m | m3 | 12.5 | 6.65 | −0.0125 | 6.6261 | 199.4 |
15APP00145 | Prefabricated circular manhole diam. 1.20 m, depth > 2.50 m | u | 1 | 931.94 | 1.9271 | 17.3828 | 12,583.4 |
15MMW90160 | Manhole-fill with sand. Mechanical means | m3 | 2.262 | 15.58 | 0.0165 | 0.3869 | 90.1 |
15MWW00210 | Trench and manhole shoring | m2 | 20 | 3.83 | 0.0026 | 0.0106 | 5 |
15ADD50005 | Rainwater tank | m3 | 552.57 | 1.2065 | 66.5697 | 9702.4 | |
15MPP90115 | Manual excavation in urbanized area > 2.50 m | m3 | 1.088 | 32.83 | −0.0606 | 30.1147 | 906.4 |
15MPP90125 | Mechanical excavation in urbanized area > 2.50 m | m3 | 2.538 | 6.65 | −0.0125 | 6.6261 | 199.4 |
15MTW00005 | Internal transport of material from excavation. Manual means | m3 | 1.088 | 5.86 | 0 | 0 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 2.538 | 0.17 | 0.0004 | 0.0004 | 0 |
15MWW90160 | Manhole-fill with sand. Mechanical means | m3 | 1.088 | 15.58 | 0.0165 | 0.3869 | 90.1 |
15MWW00210 | Trench and manhole shoring | m2 | 1.845 | 3.83 | 0.0026 | 0.0106 | 5 |
03HMM00012 | Blinding concrete HM-20/P/40/I | m3 | 0.051 | 70.55 | 0.2417 | 3.6014 | 1333.6 |
03HAL00715 | Concrete HA-25/P/20/IIa in foundation | m3 | 0.254 | 74.7 | 0.2927 | 4.3723 | 1606.8 |
03HAM00750 | Concrete HA-25/B/20/IIa in walls | m3 | 0.414 | 73.3 | 0.2959 | 4.4155 | 1627.8 |
03HAL00765 | Concrete HA-25/B/20/IIa in slabs | m3 | 0.152 | 77.74 | 0.2961 | 4.4173 | 1631.7 |
03ACC00811 | B500S corrugated steel bars | kg | 80.986 | 1.49 | 0.0016 | 0.0295 | 25.5 |
03ERM00011 | Wooden formwork for foundation | m2 | 0.217 | 9.76 | -0.0115 | 5.5177 | 166.1 |
03ERT00011 | Metallic formwork for foundation | m2 | 1.379 | 26.31 | -0.0067 | 4.6274 | 183.2 |
15ASW00100 | Polyethylene manhole step | u | 0.386 | 19.16 | 0.0067 | 0.1877 | 208.2 |
15ASW00170 | Manhole cover, diam. 400mm | u | 0.027 | 84.87 | 0.0972 | 0.9414 | 981.5 |
03EWW00025 | Steel grating (tramex) | m2 | 0.207 | 49.77 | 0.0464 | 1.3208 | 737.1 |
15UR50050 | Underground container, 4000 L. | u | 4241.46 | 5.8402 | 164.4954 | 89,718.1 | |
15MPP90115 | Manual excavation in urbanized area > 2.50 m | m3 | 7.568 | 32.83 | −0.0606 | 30.1147 | 906.4 |
15MPP90125 | Mechanical excavation in urbanized area > 2.50 m | m3 | 17.658 | 6.65 | −0.0125 | 6.6261 | 199.4 |
15MTW00005 | Internal transport of material from excavation. Manual means | m3 | 7.568 | 5.86 | 0 | 0 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 17.658 | 0.17 | 0.0004 | 0.0004 | 0 |
15MMW90160 | Manhole-fill with sand. Mechanical means | m3 | 14.014 | 15.58 | 0.0165 | 0.3869 | 90.1 |
15MGG00410 | Polyethylene geomembrane on sub-base foundation | m2 | 9.009 | 0.99 | 0.0005 | 0.0208 | 17.7 |
03HMM00012 | Blinding concrete HM-20/P/40/I | m3 | 1.802 | 70.55 | 0.2417 | 3.6014 | 1333.6 |
03HAL00715 | Concrete HA-25/P/20/IIa in foundation | m3 | 1.952 | 74.7 | 0.2927 | 4.3723 | 1606.8 |
03HAM00750 | Concrete HA-25/B/20/IIa in walls | m3 | 2.342 | 73.3 | 0.2959 | 4.4155 | 1627.8 |
03ACC00811 | B500S corrugated steel bars | kg | 328.236 | 1.49 | 0.0016 | 0.0295 | 25.5 |
03ERM00011 | Wooden Formwork for Foundation | m2 | 4.004 | 9.76 | −0.0115 | 5.5177 | 166.1 |
03ERT00011 | Metallic formwork for foundation | m2 | 15.616 | 26.31 | −0.0067 | 4.6274 | 183.2 |
15URC00050 | Underground container, 4000 L | u | 1.001 | 3923.27 | 5.0822 | 104.7827 | 83,561.5 |
15UFF50010 | Drinking fountain | u | 1032.95 | 0.0741 | 16.1298 | 2236 | |
15MZZ90110 | Manual trench excavation in urbanized area < 2.50 m | m3 | 7.999 | 14.18 | −0.0235 | 12.0475 | 385 |
15MTW00005 | Internal transport of material from excavation. Manual means | m3 | 7.999 | 5.86 | 0 | 0 | 0 |
15MMG90210 | Trench-fill with granular material. Manual means | m3 | 2.75 | 16.61 | 0.0241 | 2.5613 | 330.4 |
15MMW90160 | Manhole-fill with sand. Mechanical means | m3 | 5.199 | 15.58 | 0.0165 | 0.3869 | 90.1 |
15SCE01020 | Polyethylene pipe PE100 diam. 40 mm PN-10 | m | 15.998 | 7.44 | 0.003 | 0.0467 | 53.2 |
15SVE01020 | Manual ball valve diam. 40 mm PN-10 | u | 1 | 117.13 | 0.0084 | 0.1302 | 141.6 |
15UPF00010 | Stainless steel drinking water fountain | u | 1 | 856.15 | 0.0456 | 0.9572 | 1235.7 |
15UFF50011 | Street fountain | u | 7337.6 | 1.9022 | 132.917 | 20,479.6 | |
15MAA90010 | Excavation in urbanized area | m3 | 100.2 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 100.2 | 0.17 | 0.0004 | 0.0004 | 0 |
15MMW90160 | Manhole-fill with sand. Mechanical means | m3 | 46.2 | 15.58 | 0.0165 | 0.3869 | 90.1 |
15MCC00101 | Superficial compaction with mechanical means | m3 | 63 | 2.08 | 0.0005 | 0.068 | 1.8 |
15MMS00180 | Rampart with selected soil. Mechanical means | m3 | 18 | 4.8 | 0.0212 | 0.4119 | 49.8 |
15MMG00110 | Artificial graded aggregate | m3 | 1.2 | 11.66 | 0.0249 | 2.4833 | 328.3 |
03HMM00012 | Blinding concrete HM-20/P/40/I | m3 | 0.6 | 70.55 | 0.2417 | 3.6014 | 1333.6 |
03HAL00715 | Concrete HA-25/P/20/IIa in foundation | m3 | 16.05 | 74.7 | 0.2927 | 4.3723 | 1606.8 |
03HAM00750 | Concrete HA-25/B/20/IIa in walls | m3 | 21.825 | 73.3 | 0.2959 | 4.4155 | 1627.8 |
03HAL00765 | Concrete HA-25/B/20/IIa in slabs | u | 1.5 | 77.74 | 0.2961 | 4.4173 | 1631.7 |
03ACC00811 | B500S corrugated steel bars | m2 | 3396.412 | 1.49 | 0.0016 | 0.0295 | 25.5 |
03ERM00011 | Wooden formwork for foundation | m2 | 36 | 9.76 | −0.0115 | 5.5177 | 166.1 |
03ERT00011 | Metallic formwork for foundation | m2 | 181.8 | 26.31 | −0.0067 | 4.6274 | 183.2 |
15ASW00100 | Polyethylene manhole step | u | 10 | 19.16 | 0.0067 | 0.1877 | 208.2 |
10ACN00111 | Grey granite, polished, 2 cm | m2 | 68.75 | 121.73 | 0.0507 | 29.7471 | 912 |
10ACN00112 | Black granite, polished, 2 cm | m2 | 67.6 | 219 | 0.0507 | 29.7471 | 912 |
10SES00150 | Surface water proofing treatment | m2 | 98.75 | 12.73 | 0.0034 | 0.0754 | 300 |
10ACW00112 | Black granite polished piece, 60 × 40 cm max. | u | 1 | 219 | 0.0507 | 29.7471 | 912 |
15ADW00110 | Filling and depuration compact system for street fountain | u | 1 | 5279.13 | 0.3412 | 8.0906 | 6272.3 |
15UPW00120 | Compact recirculation system for fountain | m | 1 | 1094.63 | 0.2185 | 4.9834 | 3918.4 |
15ACV50140 | Trench to draining pipe DN 200 up to 3 m deep | m | 4091.87 | 4.5653 | 402.8376 | 66,946.9 | |
15MZZ90110 | Manual trench excavation in urbanized area < 2.50 m | m3 | 0.488 | 14.18 | −0.0235 | 12.0475 | 385 |
15MZZ90120 | Mechanical trench excavation in urbanized area < 2.50 m | m3 | 1.138 | 3.01 | -0.0056 | 3.0119 | 100.6 |
15MTW00005 | Internal transport of material from excavation. Manual means | m3 | 0.488 | 5.86 | 0 | 0 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 1.138 | 0.17 | 0.0004 | 0.0004 | 0 |
15MGG00170 | Geotextile sheet 125−160 gr/ m2 | m2 | 7.202 | 2.1 | 0.0003 | 0.0107 | 9 |
15MGD00140 | PVC drainage pipe, diam. 200 mm | m | 1 | 12.79 | 0.0443 | 6.4776 | 1145.5 |
15MGG00810 | HD polyethylene geomembrane, 1.5 mm | m2 | 4.001 | 4.36 | 0.0043 | 0.1798 | 152.9 |
15MMG00250 | Trench-fill with draining material. Mechanical means | m3 | 0.25 | 12.23 | 0.023 | 2.3695 | 292.5 |
15MMG00350 | Trench-fill with filter material. Mechanical means | m3 | 1.375 | 11.85 | 0.0194 | 2.3695 | 155.1 |
15ADD00100 | Concrete drainage manhole 1.00 × 1.00 m, depth > 2.50 m | u | 0.015 | 2265.75 | 1.8324 | 199.7122 | 25972.3 |
15ADD00110 | Storm overflow manhole 1.00 × 1.00 m, depth > 2.00 m | u | 0.015 | 1759.57 | 2.6703 | 176.6585 | 38734 |
15CSS50120 | Transfer traffic light, 6 m high | u | 1600.28 | 1.2664 | 15.058 | 9062.2 | |
15CSE03160 | 2 PVC pipes, diam. 110 mm, for traffic light network | m | 20 | 25.44 | 0.0247 | 2.426 | 315.2 |
15CSR00100 | Highway manhole, 60 × 60 cm | u | 1 | 157.04 | 0.1978 | 2.35 | 2300.9 |
03HMM00035 | Earthing rods in traffic light | u | 1 | 87.25 | 0.202 | 2.7037 | 1384.8 |
15CSW00120 | Earthing rods in traffic light | u | 1 | 61.28 | 0.0091 | 0.3647 | 163.1 |
15RCW00120 | Displacement of 6-m-high traffic light | u | 1 | 563.99 | 0.5984 | 1.9326 | 807 |
15CSCE02270 | Copper circuit, 1 × 16 mm2 HO7-K(AS) | m | 20 | 16.87 | 0.0003 | 0.0115 | 5.5 |
15RCW00500 | Connection closet | u | 1 | 205.74 | 0.2057 | 4.3462 | 3512.2 |
15RCW00600 | Electronic regulator transfer | u | 1 | 367.65 | 0.0021 | 0.0071 | 4.2 |
15CSW02010 | Connection cabinet—traffic light regulator | m | 20 | 115.02 | 0.0263 | 0.9162 | 569.3 |
15PPP50180 | Cycle paths | m2 | 83.56 | 0.2579 | 6.1197 | 1827.9 | |
15MAA90010 | Excavation in urbanized area | m3 | 0.58 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 0.58 | 0.17 | 0.0004 | 0.0004 | 0 |
15MCC00101 | Superficial compaction with mechanical means | m2 | 1 | 2.08 | 0.0005 | 0.068 | 1.8 |
15MMS00180 | Rampart with selected soil. Mechanical means | m3 | 0.3 | 4.8 | 0.0212 | 0.4119 | 49.8 |
15MMG00110 | Artificial graded aggregate | m3 | 0.2 | 11.66 | 0.0249 | 2.4833 | 328.3 |
15PBB01010 | Prefabricated curb of photocatalytic concrete (R5) DE 30/40 × 70 cm | m | 0.4 | 60.03 | 0.2035 | 3.1393 | 1437.9 |
15CPP00100 | Road markings, 10 cm wide | m | 1.2 | 0.74 | 0.0004 | 0.0098 | 10.1 |
15PPP50111 | Bituminous Concrete Driveway | m2 | 214.17 | 0.4301 | 18.6928 | 6497.1 | |
15MAA90010 | Excavation in urbanized area | m3 | 0.58 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 0.58 | 0.17 | 0.0004 | 0.0004 | 0 |
15MCC00101 | Superficial compaction with mechanical means | m2 | 1 | 2.08 | 0.0005 | 0.068 | 1.8 |
15MMS00180 | Rampart with selected soil. Mechanical means | m3 | 0.5 | 4.8 | 0.0212 | 0.4119 | 49.8 |
15MMG00110 | Artificial graded aggregate | m3 | 0.25 | 11.66 | 0.0249 | 2.4833 | 328.3 |
15PCC00110 | Asphalt concrete AC 32 BASE B 50/70 G | m3 | 0.07 | 128.55 | 0.2329 | 9.0222 | 3917 |
15PCC00120 | Asphalt concrete AC 22 BIN B 50/70 S | m3 | 0.06 | 62.83 | 0.1432 | 6.7 | 2200.2 |
15PPP50250 | Pavement in children’s play area with artificial grass and absorbent base | m2 | 43.76 | 0.0297 | 1.5829 | 371.9 | |
15MAA90010 | Excavation in urbanized area | m3 | 0.4 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 0.4 | 0.17 | 0.0004 | 0.0004 | 0 |
15MCC00101 | Superficial compaction with mechanical means | m2 | 1 | 2.08 | 0.0005 | 0.068 | 1.8 |
15PPP01250 | Pavement in children’s play area of artificial grass and shock absorbent base | m2 | 1 | 37.43 | 0.0218 | 1.5075 | 370.1 |
15PPP50120 | Pavement in parking area with paving blocks | m2 | 58.11 | 0.0923 | 1.4761 | 521.4 | |
15MAA90010 | Excavation in urbanized area | m3 | 0.8 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 0.8 | 0.17 | 0.0004 | 0.0004 | 0 |
15MCC00101 | Superficial compaction with mechanical means | m2 | 1 | 2.08 | 0.0005 | 0.068 | 1.8 |
15MMS00180 | Rampart with selected soil. Mechanical means | m3 | 0.4 | 4.8 | 0.0212 | 0.4119 | 49.8 |
15PPP01120 | Interlocking concrete block pavement, 30 × 20 × 10 cm, photocatalytic | m2 | 1 | 46.98 | 0.0632 | 0.9888 | 469.8 |
15PPP50110 | Sidewalk with concrete paving blocks | m2 | 37.19 | 0.0994 | 1.5906 | 506.3 | |
15MAA90010 | Excavation in urbanized area | m3 | 0.55 | 4.08 | 0.007 | 0.007 | 0 |
15MTW00010 | Internal transport of material from excavation. Mechanical means | m3 | 0.55 | 0.17 | 0.0004 | 0.0004 | 0 |
15MCC00101 | Superficial compaction with mechanical means | m2 | 1 | 2.08 | 0.0005 | 0.068 | 1.8 |
15MMS00180 | Rampart with selected soil. Mechanical means | m3 | 0.3 | 4.8 | 0.0212 | 0.4119 | 49.8 |
15PSS00150 | Concrete slab HM-20 DE 15 cm | m2 | 1 | 10.37 | 0.0361 | 0.5385 | 197.9 |
15PPP01110 | Smooth concrete block pavement 40 × 20 × 6 cm, photocatalytic | m2 | 1 | 15.69 | 0.0342 | 0.5648 | 256.8 |
15EPP00105 | Galvanized steel streetlight 6 m LEDS light | u | 1 | 1023.07 | 3.425 | 70.992 | 56,601.6 |
15UPA0010 | Bench with metallic support and Nordic pine seat | u | 1 | 256.29 | −0.041 | 0.227 | 655.7 |
15URP00010 | Metallic waste bin | u | 1 | 457.78 | 0.271 | 4.348 | 1979.1 |
15UPA0005 | White concrete bench | u | 1 | 940.84 | 2.052 | 28.071 | 13,531.7 |
15UPB00100 | Children’s seewaw | u | 1 | 1005.29 | 0.396 | 7.351 | 4847.6 |
15CRR10102 | Vertical traffic sign | u | 1 | 114.12 | 0.31 | 6.141 | 4513 |
References
- European Parliament—Council of the European Union. Directive EU 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). Off. J. Eur. Union 2018, 61, 75. [Google Scholar]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Simoncini, E.; Pulselli, F.M.; Bastianoni, S. Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build. 2007, 39, 620–628. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Pulselli, F.M.; Mazzali, U.; Peron, F.; Bastianoni, S. Emergy based evaluation of environmental performances of Living Wall and Grass Wall systems. Energy Build. 2014, 73, 200–211. [Google Scholar] [CrossRef]
- Solís-Guzmán, J.; Marrero, M.; Ramírez-de-Arellano, A. Methodology for determining the ecological footprint of the construction of residential buildings in Andalusia (Spain). Ecol. Indic. 2013, 25, 239–249. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. Toward the Ecological Footprint of the use and maintenance phase of buildings: Utility consumption and cleaning tasks. Ecol. Indic. 2016, 69, 66–77. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. Ecological footprint of the use and maintenance phase of buildings: Maintenance tasks and final results. Energy Build. 2017, 155, 339–351. [Google Scholar] [CrossRef]
- Marrero, M.; Rivero-Camacho, C.; Alba-Rodríguez, M.D. What are we discarding during the life cycle of a building? Case studies of social housing in Andalusia, Spain. Waste Manag. 2020, 102, 391–403. [Google Scholar] [CrossRef]
- Freire-Guerrero, A.; Alba-Rodríguez, M.D.; Marrero, M. A budget for the ecological footprint of buildings is possible: A case study using the dwelling construction cost database of Andalusia. Sustain. Cities Soc. 2019, 51, 101737. [Google Scholar] [CrossRef]
- UNE-EN 15978. Sustainability of Construction Works. Assessment of Environmental Performance of Buildings. Calculation Method; AENOR: Madrid, Spain, 2012. [Google Scholar]
- Knutt, E. Spain Launches BIM Strategy with Pencilled-in 2018 Mandate. Available online: http://www.bimplus.co.uk/news/spain-launches-bim-strategy-pencilled-2018-mandate/ (accessed on 1 May 2020).
- AEC (UK) Committee. AEC (UK) BIM Technology Protocol, Practical Implementation of BIM for the UK Architectural, Engineering and Construction (AEC) Industry; AEC Initiative: London, UK, 2015. [Google Scholar]
- BMVI. BIM in Europe: Germany’s Public Plan for 2015/2020 and Pilot Projects for Roads and Railways—BibLus; Germany’s Federal Ministry of Transport and Digital Infrastructure (BMVI): Berlin, Germany, 2013.
- Delcambre, B. Mission Numérique Bâtiment Rapport; French Government: Paris, France, 2014.
- Bey, N.; Hauschild, M.Z.; McAloone, T.C. Drivers and barriers for implementation of environmental strategies in manufacturing companies. CIRP Ann. 2013, 62, 43–46. [Google Scholar] [CrossRef]
- Mousa, M.; Luo, X.; McCabe, B. Utilizing BIM and Carbon Estimating Methods for Meaningful Data Representation. Procedia Eng. 2016, 145, 1242–1249. [Google Scholar] [CrossRef] [Green Version]
- Cheung, F.K.T.; Rihan, J.; Tah, J.; Duce, D.; Kurul, E. Early stage multi-level cost estimation for schematic BIM models. Autom. Constr. 2012, 27, 67–77. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Autom. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of bim-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Eleftheriadis, S.; Mumovic, D.; Greening, P. Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renew. Sustain. Energy Rev. 2017, 67, 811–825. [Google Scholar] [CrossRef] [Green Version]
- Kulahcioglu, T.; Dang, J.; Toklu, C. A 3D analyzer for BIM-enabled Life Cycle Assessment of the whole process of construction. HVAC R Res. 2012, 18, 283–293. [Google Scholar]
- Lamé, G.; Leroy, Y.; Yannou, B. Ecodesign tools in the construction sector: Analyzing usage inadequacies with designers’ needs. J. Clean. Prod. 2017, 148, 60–72. [Google Scholar] [CrossRef]
- Chong, H.Y.; Lee, C.Y.; Wang, X. A mixed review of the adoption of Building Information Modelling (BIM) for sustainability. J. Clean. Prod. 2017, 142, 4114–4126. [Google Scholar] [CrossRef] [Green Version]
- Ilhan, B.; Yaman, H. Green building assessment tool (GBAT) for integrated BIM-based design decisions. Autom. Constr. 2016, 70, 26–37. [Google Scholar] [CrossRef]
- Fiès, B.; Lützkendorf, T.; Balouktsi, M. Life Cycle Sustainable Assessment and BIM. In Sustainable Buildings Construction Products and Technologies; University of Technology: Graz, Austria, 2013. [Google Scholar]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Integration of LCA and LCC analysis within a BIM-based environment. Autom. Constr. 2019, 103, 127–149. [Google Scholar] [CrossRef]
- Bovea, M.D.; Powell, J.C. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes. Waste Manag. 2016, 50, 151–172. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 14040:2006: Environmental Management—Life Cycle Assessment—Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- International Organization for Standardization. ISO 14044:2006: Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- European Commission. Buying Green! A Handbook on Green Public Procurement; European Union: Brussels, Belgium, 2016.
- Bueno, C.; Fabricio, M.M. Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in. Autom. Constr. 2018, 90, 188–200. [Google Scholar] [CrossRef]
- Stadel, A.; Eboli, J.; Ryberg, A.; Mitchell, J.; Spatari, S. Intelligent Sustainable Design: Integration of Carbon Accounting and Building Information Modeling. J. Prof. Issues Eng. Educ. Pract. 2011, 137, 51–54. [Google Scholar] [CrossRef]
- Cavalliere, C.; Dell’Osso, G.R.; Pierucci, A.; Iannone, F. Life cycle assessment data structure for building information modelling. J. Clean. Prod. 2018, 199, 193–204. [Google Scholar] [CrossRef]
- UNE-EN ISO 14024. Environmental Labels and Declarations—Type I Environmental Labelling—Principles and Procedures; AENOR: Madrid, Spain, 2001. [Google Scholar]
- UNE-EN ISO 14021. Environmental Labels and Declarations—Self-Declared Environmental Claims (Type II Environmental Labelling); AENOR: Madrid, Spain, 2017. [Google Scholar]
- UNE-EN ISO 14025. Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures; AENOR: Madrid, Spain, 2006. [Google Scholar]
- UNE-EN 15804. Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products; AENOR: Madrid, Spain, 2012. [Google Scholar]
- Pasanen, P.; Sipari, A.; Terranova, E.; Castro, R.; Bruce-Hyrkas, T. The Embodied Carbon Review—Embodied Carbon Reduction 100+ Regulations and Rating Systems Globally; Bionova Ltd.: Helsinki, Finland, 2018. [Google Scholar]
- European Commission. Single Market for Green Products; European Commission; European Union: Brussels, Belgium, 2016. [Google Scholar]
- European Parliament. Resolution of 9 July 2015 on Resource Efficiency: Moving Towards a Circular Economy (2014/2208(INI)); European Union: Brussels, Belgium, 2015.
- EPD System. International EPD® System. Available online: https://www.environdec.com/es/ (accessed on 20 February 2020).
- European Commission. Single Market for Green Products—The Product Environmental Footprint Pilots—Environment—European Commission; European Union: Brussels, Belgium, 2019. [Google Scholar]
- FVS. Sello de Huella Ambiental FVS|Fundación Vida Sostenible. Available online: https://www.vidasostenible.org/sello-de-huella-ambiental-fvs/ (accessed on 20 February 2020).
- ECoPlatform. Available online: https://www.eco-platform.org/ (accessed on 20 February 2020).
- European Commission. Sustainable Buildings—Green Growth and Circular Economy—Environment—European Commission; European Union: Brussels, Belgium, 2019. [Google Scholar]
- Almeida, C.P.; Ramos, A.F.; Silva, J.M. Sustainability assessment of building rehabilitation actions in old urban centres. Sustain. Cities Soc. 2018, 36, 378–385. [Google Scholar] [CrossRef]
- Sinha, R.; Lennartsson, M.; Frostell, B. Environmental footprint assessment of building structures: A comparative study. Build. Environ. 2016, 104, 162–171. [Google Scholar] [CrossRef]
- Marrero, M.; Ramirez-de-Arellano, A. The building cost system in Andalusia: Application to construction and demolition waste management. Constr. Manag. Econ. 2010, 28, 495–507. [Google Scholar] [CrossRef]
- Guerrero, A.F.; Marrero, M. Evaluation of the embodied energy of a construction project using the budget. Habitat Sustentable 2015, 5, 54–63. [Google Scholar]
- Guerrero, A.F.; Meléndez, M.M.; Martín, J.M. Incorporación de huella de carbono y huella ecológica en las bases de costes de construcción. Estudio de caso de un proyecto de urbanización en Écija, España. Hábitat Sustentable 2016, 6, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Solís-Guzmán, J.; Martínez-Rocamora, A.; Marrero, M. Methodology for determining the carbon footprint of the construction of residential buildings. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer: Singapore, 2014; pp. 49–83. [Google Scholar]
- Solís-Guzmán, J.; Rivero-Camacho, C.; Alba-Rodríguez, D.; Martínez-Rocamora, A. Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project. Sustainability 2018, 10, 1359. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pérez, M.R.; Rodríguez, M.D.A.; Marrero, M. Systems of Water Supply and Sanitation for Domestic Use. In Water Footprint and Carbon Footprint Evaluation: First Results; IV International Congress on Construction and Building Research—Santa Cruz de Tenerife: Tenerife, Spain, 2017. [Google Scholar]
- Ruiz-Pérez, M.R.; Alba-Rodríguez, M.D.; Marrero, M. The water footprint of city naturalisation. Evaluation of the water balance of city gardens. Ecological Modelling. 2020, 424, 109031. [Google Scholar] [CrossRef]
- Ruiz-Pérez, M.R.; Alba-Rodríguez, M.D.; Castaño-Rosa, R.; Solís-Guzmán, J.; Marrero, M. HEREVEA Tool for Economic and Environmental Impact Evaluation for Sustainable Planning Policy in Housing Renovation. Sustainability 2019, 11, 2852. [Google Scholar] [CrossRef] [Green Version]
- Marrero, M.; Martin, C.; Muntean, R.; González-Vallejo, P.; Rodríguez-Alba, M.D. Tools to quantify environmental impact and their application to teaching: Projects City-zen and HEREVEA. IOP Conf. Ser. Mater. Sci. Eng. 2018, 399, 012038. [Google Scholar] [CrossRef] [Green Version]
- Solís-Guzmán, J.; Rivero-Camacho, C.; Tristancho, M.; Martínez-Rocamora, A.; Marrero, M. Software for Calculation of Carbon Footprint for Residential Buildings. In Environmental Footprints and Eco-Design of Products and Processes; Springer: Basel, Switzerland, 2020; pp. 55–79. [Google Scholar]
- Basbagill, J.; Flager, F.; Lepech, M.; Fischer, M. Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build. Environ. 2013, 60, 81–92. [Google Scholar] [CrossRef]
- Kreiner, H.; Passer, A.; Wallbaum, H. A new systemic approach to improve the sustainability performance of office buildings in the early design stage. Energy Build. 2015, 109, 385–396. [Google Scholar] [CrossRef]
- Jalaei, F.; Jrade, A. Integrating Building Information Modeling (BIM) and energy analysis tools with green building certification system to conceptually design sustainable buildings. J. Inf. Technol. Constr. 2014, 19, 494–519. [Google Scholar]
- Marzouk, M.; Abdelkader, E.M.; Al-Gahtani, K. Building information modeling-based model for calculating direct and indirect emissions in construction projects. J. Clean. Prod. 2017, 152, 351–363. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W. A BIM-integrated Fuzzy Multi-criteria Decision Making Model for Selecting Low-Carbon Building Measures. Procedia Eng. 2015, 118, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Gul, M.; Celik, E.; Gumus, A.T.; Guneri, A.F. A fuzzy logic based PROMETHEE method for material selection problems. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 68–79. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Ceranic, B.; Gallanagh, M.; Kadiri, K.O. Life cycle environmental performance of material specification: A BIM-enhanced comparative assessment. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Crippa, J.; Boeing, L.C.; Caparelli, A.P.A.; de Mello Maron, M.D.R.; Scheer, S.; Araujo, A.M.F.; Bem, D. A BIM–LCA integration technique to embodied carbon estimation applied on wall systems in Brazil. Built Environ. Proj. Asset Manag. 2018, 8, 491–503. [Google Scholar] [CrossRef]
- Najjar, M.; Figueiredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J. Build. Eng. 2017, 14, 115–126. [Google Scholar] [CrossRef]
- Schultz, J.; Ku, K.; Gindlesparger, M.; Doerfler, J. A benchmark study of BIM-based whole-building life-cycle assessment tools and processes. Int. J. Sustain. Build. Technol. Urban Dev. 2016, 7, 219–229. [Google Scholar] [CrossRef]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Antón, L.Á.; Díaz, J. Integration of life cycle assessment in a BIM environment. Procedia Eng. 2014, 85, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Inyim, P.; Rivera, J.; Zhu, Y. Integration of building information modeling and economic and environmental impact analysis to support sustainable building design. J. Manag. Eng. 2014, 31, A4014002. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Deng, M.; Tse, K.T.; Chan, C.M.; Lo, I.M.C.; Cheng, J.C.P. Holistic BIM framework for sustainable low carbon design of high-rise buildings. J. Clean. Prod. 2018, 195, 1091–1104. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Cheng, J.C.P.; Lo, I.M.C.; Chan, C.M. Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings. J. Clean. Prod. 2017, 141, 825–836. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Wu, J.; Zhao, B. Building-information-modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. J. Clean. Prod. 2018, 183, 729–743. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Telford, T. Civil Engineering Standard Method of Measurement, 3rd ed.; Thomas Telford Ltd.: London, UK, 1991; pp. 4–39. [Google Scholar]
- UniFormatTM. The Construction Specifications Institute: UniFormatTM: A Uniform Classification of Construction Systems and Assemblies; Construction Specifications Institute: Alexandria, VA, USA, 1998. [Google Scholar]
- Omniclass. Omniclass: A Strategy for Classifying the Built Environment—Table 13: Spaces by Function; Construction Specifications Institute: Alexandria, VA, USA, 2012. [Google Scholar]
- ISO 12006-2. Building Construction—Organization of Information about Construction Works—Part 2: Framework for Classification; ISO: Geneva, Switzerland, 2015. [Google Scholar]
- CSI/CSC. Construction Specifications Institute/Construction Specifications Canada; MasterFormat 2016 Edition: Numbers and Titles; Construction Specifications Institute: Alexandria, VA, USA, 2016. [Google Scholar]
- ITeC. BEDEC Website. ITecC. Barcelona. Available online: https://itec.es/ (accessed on 20 February 2020).
- Ecoinvent Centre. Ecoinvent Database v3 Ecoinvent Report; Ecoinvent: Zurich, Switzerland, 2013. [Google Scholar]
- PRé Sustainability. SimaPro 8. Available online: https://simapro.com/ (accessed on 28 March 2018).
- SOFIAS Project. SOFIAS Project Website. 2017. Available online: http://161.111.70.91/index.php/es/actualidad/actividades-y-cursos/conferencias-y-actos-publicos/243-finalsofias (accessed on 20 February 2020).
- e2CO2cero. e2CO2cero Tool Website. 2014. Available online: http://online.e2co2cero.com/ (accessed on 20 February 2020).
- Lützkendorf, T.; Foliente, G.; Balouktsi, M.; Wiberg, A.H. Net-zero buildings: Incorporating embodied impacts. Build. Res. Inf. 2015, 43, 62–81. [Google Scholar] [CrossRef]
- Abanda, F.H.; Oti, A.H.; Tah, J.H.M. Integrating BIM and new rules of measurement for embodied energy and CO2 assessment. J. Build. Eng. 2017, 12, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Royal Institution of Chartered Surveyors. RICS NRM: New Rules of Measurement; RICS: London, UK, 2014. [Google Scholar]
- Bath Inventory of Carbon and Energy (Bath ICE). Available online: https://circularecology.com/embodied-carbon-footprint-database.html (accessed on 20 February 2020).
- Mercader Moyano, M.D.P.; Camporeale, P.E.; Cózar-Cózar, E. Evaluación de impacto ambiental mediante la introducción de indicadores a un modelo BIM de vivienda social. Rev. Hábitat Sustentable 2019, 9, 78–93. [Google Scholar] [CrossRef]
- Geng, S.; Wang, Y.; Zuo, J.; Zhou, Z.; Du, H.; Mao, G. Building life cycle assessment research: A review by bibliometric analysis. Renew. Sustain. Energy Rev. 2017, 76, 176–184. [Google Scholar] [CrossRef]
- Dossche, C.; Boel, V.; de Corte, W. Use of Life Cycle Assessments in the Construction Sector: Critical Review. Procedia Eng. 2017, 171, 302–311. [Google Scholar] [CrossRef]
- Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO2 emissions of residential buildings. Build. Environ. 2018, 130, 212–226. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Earthscan: London, UK, 2011. [Google Scholar]
- WFN. Waterfootprint Network. Available online: https://waterfootprint.org/en/ (accessed on 20 February 2020).
- Andalusia Government. Andalusia Construction Cost Database (ACCD); Andalusia Government: Andalusia, Spain, 2017.
- Marrero, M.; Puerto, M.; Rivero-Camacho, C.; Freire-Guerrero, A.; Solís-Guzmán, J. Assessing the economic impact and ecological footprint of construction and demolition waste during the urbanization of rural land. Resour. Conserv. Recycl. 2017, 117, 160–174. [Google Scholar] [CrossRef]
- SEOPAN. Machinery Costs Manual (In Spanish: Manual de Costes de Maquinaria). 2008. Available online: http://www.concretonline.com/pdf/07construcciones/art_tec/SeopanManualCostes.pdf (accessed on 1 July 2016).
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Visualization of environmental potentials in building construction at early design stages. Build. Environ. 2018, 140, 153–161. [Google Scholar] [CrossRef]
IFC Element | ACCD Code | Uniclass | Description | Street Element | U | Cost (EUR/U) | CF (tCO2eq/U) | WF (m3water/U) | EE (MJ/U) |
---|---|---|---|---|---|---|---|---|---|
IfcSlab | 15PPP50120 | EF_30_60 | Pavement in parking area with paving blocks | Pavement | m2 | 54.37 | 0.078 | 1.2 | 492 |
15PPP50250 | EF_30_60 | Pavement in children’s play area with artificial grass and absorbent base | Pavement | m2 | 41.21 | 0.025 | 1.6 | 372 | |
15PPP50110 | EF_30_60 | Sidewalk with concrete paving blocks | Sidewalk | m2 | 31.91 | 0.081 | 1.3 | 471 | |
15PPP50180 | EF_30_60 | Cycle paths | Cycle path | m2 | 33.22 | 0.098 | 2 | 670 | |
15PPP50110 | EF_30_60 | Bituminous concrete driveway | Driveway | m2 | 22.64 | 0.047 | 1.9 | 515 | |
IfcTank | 15ADD50005 | Pr_60_50_96_15 | Rainwater tank | Tanks | m3 | 552.57 | 1.207 | 66.6 | 9702 |
15UR50050 | Pr_40_50_07_22 | Underground container, 4000 litres | Container | u | 5950.12 | 6.719 | 584.8 | 34709 | |
IfcUrbanFurniture | 15EPP00105 | Pr_70_70_48_73 | Galvanized steel streetlight 6 m LEDS light | Streetlight | u | 1023.07 | 3.425 | 71 | 56602 |
15UPA0010 | Pr_40_30_29 | Bench, metallic support and Nordic pine seat | Bench | u | 256.29 | −0.041 | 0.2 | 656 | |
15URP00010 | Pr_40_50_07_96 | Metallic public bin | Bin | u | 457.78 | 0.271 | 4.3 | 1979 | |
15UPA0005 | Pr_40_30_29 | White concrete bench | Bench | u | 940.84 | 2.052 | 28.1 | 13532 | |
15UFF50010 | Pr_40_20_87_24 | Drinking fountain | Fountain | u | 1379.35 | 0.066 | 107.3 | 6685 | |
15UFF50011 | Pr_70_55_98_30 | Street fountain | Fountain | u | 45732.76 | 25.402 | 5457 | 363223 | |
15UPB00100 | Pr_40_30_61_88 | Children’s seesaw | Seesaw | u | 1005.29 | 0.396 | 7.4 | 4848 | |
15CSS50120 | Pr_70_75_70_14 | Transfer traffic light, 6 m high | Traffic light | u | 4589.57 | 2.24 | 78.9 | 25973 | |
15CRR10102 | Pr_70_75_72_30 | Vertical traffic sign | Sign | u | 114.12 | 0.31 | 6.1 | 4513 | |
IfcPipeSegment | 15ACW50110 | Pr_65_52 | Ceramic pipe DN 600 | Pipe | m | 211.39 | 0.278 | 17.2 | 5300 |
IfcFooting | 15ACV50140 | Pr_65_52_07_89 | Trench to draining pipe DN 200 up to 3 m deep | Trench | m | 138.46 | 0.1464 | 26.1 | 3382 |
15APP50145 | Pr_65_52 | Concrete well for DN 600 | Well | u | 1126.88 | 1.8605 | 101.4 | 15380 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrero, M.; Wojtasiewicz, M.; Martínez-Rocamora, A.; Solís-Guzmán, J.; Alba-Rodríguez, M.D. BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process. Sustainability 2020, 12, 4196. https://doi.org/10.3390/su12104196
Marrero M, Wojtasiewicz M, Martínez-Rocamora A, Solís-Guzmán J, Alba-Rodríguez MD. BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process. Sustainability. 2020; 12(10):4196. https://doi.org/10.3390/su12104196
Chicago/Turabian StyleMarrero, Madelyn, Maciej Wojtasiewicz, Alejandro Martínez-Rocamora, Jaime Solís-Guzmán, and M. Desirée Alba-Rodríguez. 2020. "BIM-LCA Integration for the Environmental Impact Assessment of the Urbanization Process" Sustainability 12, no. 10: 4196. https://doi.org/10.3390/su12104196