Seawater Fluorescence Near Oil Occurrence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seawater Sampling and Combining with Oil
2.2. Measurements
3. Results and Discussion
3.1. Fluorometric Index (FI) Determination Procedure Using EEMs of the Seawater before and after Combining with Oil
3.2. Fluorometric Index of Different Origin Sea Waters
3.3. Fluorometric Index Compared to the Degree of Contamination
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fingas, M. Oil Spill Science and Technology, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2016. [Google Scholar]
- Migliaccio, M.; Gambardella, A.; Tranfaglia, M. SAR Polarimetry. To Observe Oil Spills. IEEE Trans. Geosci. Remote Sens. 2007, 45, 506–511. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Holmes, J.; Swayze, G.A.; Leifer, I.; Melton, C.; García, O.; Macdonald, I.; Hess, M.; Muller-Karger, F.; et al. Remote sensing estimation of surface oil volume during the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico: Scaling up AVIRIS observations with MODIS measurements. J. Appl. Remote. Sens. 2018, 12, 026008. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Guo, L.; Shiller, A.M.; Lohrenz, S.; Asper, V.L.; Osburn, C. Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. Mar. Chem. 2013, 148, 10–21. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Y.; Liu, B.; Liu, Y.; Wang, T. Design and Implementation of a Coastal-Mounted Sensor for Oil Film Detection on Seawater. Sensors 2017, 18, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Weisberg, R.H.; Liu, Y.; Zheng, L.; Daly, K.L.; English, D.; Zhao, J.; Vargo, G.A. Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophys. Res. Lett. 2011, 38, 09601. [Google Scholar] [CrossRef] [Green Version]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.E.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote. Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Lu, Y.; Liu, Y.; Wang, M.; Hu, C. Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery. Geophys. Res. Lett. 2018, 45, 3212–3220. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. Oil Spill Remote Sensing. In Handbook of Oil Spill Science and Technology; Wiley: Hoboken, NJ, USA, 2015; pp. 311–356. [Google Scholar]
- Downare, T.D.; Mullins, O.C. Visible and Near-Infrared Fluorescence of Crude Oils. Appl. Spectrosc. 1995, 49, 754–764. [Google Scholar] [CrossRef]
- Wang, Z.; Stout, S. Oil Spill Environmental Forensics: Fingerprinting and Source Identification, 2nd ed.; Academic Press as An Imprint of Elsevier: London, UK, 2016. [Google Scholar]
- Patra, D.; Mishra, A.K. Total synchronous fluorescence scan spectra of petroleum products. Anal. Bioanal. Chem. 2002, 373, 304–309. [Google Scholar] [CrossRef]
- Baszanowska, E.; Otremba, Z. Modification of optical properties of seawater exposed to oil contaminants based on excitation-emission spectra. J. Eur. Opt. Soc. Rapid Publ. 2015, 10, 10047. [Google Scholar] [CrossRef] [Green Version]
- Otremba, Z.; Zielinski, O.; Hu, C. Optical contrast of oil dispersed in seawater under windy conditions. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13051. [Google Scholar] [CrossRef] [Green Version]
- Tedetti, M.; Guigue, C.; Goutx, M. Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Mar. Pollut. Bull. 2010, 60, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Coble, P.G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscope. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Miranda, M.L.; Mustaffa, N.I.H.; Robinson, T.-B.; Stolle, C.; Ribas-Ribas, M.; Wurl, O.; Zielinski, O. Influence of solar radiation on biogeochemical parameters and fluorescent dissolved organic matter (FDOM) in the sea surface microlayer of the southern coastal North Sea. Elem. Sci. Anth. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Coble, P. Colored dissolved organic matter in seawater. In Subsea Optics and Imaging; Elsevier BV: London, UK, 2013; pp. 98–118. [Google Scholar]
- Drozdowska, V.; Freda, W.; Baszanowska, E.; Rudź, K.; Darecki, M.; Heldt, J.; Toczek, H. Spectral properties of natural and oil-polluted Baltic seawater – results of measurements and modelling. Eur. Phys. J. Spec. Top. 2013, 222, 2157–2170. [Google Scholar] [CrossRef]
- McKee, D.; Röttgers, R.; Neukermans, G.; Calzado, V.S.; Trees, C.; Ampolo-Rella, M.; Neil, C.; Cunningham, A. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton. J. Geophys. Res. Oceans 2014, 119, 9013–9025. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, M. Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea**Support for this study was provided by the project ‘Satellite Monitoring of the Baltic Sea Environment—SatBałtyk’ funded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09. Oceanology 2012, 54, 545–564. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Yu, N.; Wu, Y.; Feng, R.; Yu, N. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks. Sensors 2011, 12, 189–214. [Google Scholar] [CrossRef] [Green Version]
- Blokus-Roszkowska, A.; Kwiatuszewska-Sarnecka, B.; Wolny, P. Analysis of the Crude Oil Transfer Process and Its Safety; University of Turku: Turku, Finland, 2017. [Google Scholar]
- Agbakwuru, J. Oil/Gas Pipeline Leak Inspection and Repair in Underwater Poor Visibility Conditions: Challenges and Perspectives. J. Environ. Prot. 2012, 3, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Zdziebłowski, S. Wrecks on the Bottom of the Baltic Sea Are a Potential Environmental Hazard, Ministry of Science and Higher Education (Internet Portal). Available online: http://scienceinpoland.pap.pl/en/news/news%2C33072%2Cwrecks-bottom-baltic-sea-are-potential-environmental-hazard.html (accessed on 16 March 2020).
- Macdonald, I.R.; Garcia-Pineda, O.; Beet, A.; Asl, S.D.; Feng, L.; Graettinger, G.; French-McCay, D.; Holmes, J.; Hu, C.; Huffer, F.; et al. Natural and unnatural oil slicks in the G ulf of M exico. J. Geophys. Res. Oceans 2015, 120, 8364–8380. [Google Scholar] [CrossRef]
- SOS California, Natural Oil Seepage Facts. Available online: http://www.soscalifornia.org/natural-oil-seepage-facts/ (accessed on 14 February 2020).
- Chen, S.; Hu, C. In search of oil seeps in the Cariaco basin using MODIS and MERIS medium-resolution data. Remote. Sens. Lett. 2014, 5, 442–450. [Google Scholar] [CrossRef]
- Baszanowska, E.; Otremba, Z. Detecting the Presence of Different Types of Oil in Seawater Using a Fluorometric Index. Sensors 2019, 19, 3774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coble, P.G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Baszanowska, E.; Otremba, Z. Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment. J. Eur. Opt. Soc. Rapid Publ. 2014, 9, 14029. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Hansen, A.B.; Mortensen, J.; Andersen, O. Characterization and Matching of Oil Samples Using Fluorescence Spectroscopy and Parallel Factor Analysis. Anal. Chem. 2005, 77, 2210–2217. [Google Scholar] [CrossRef] [PubMed]
- Maculewicz, J.; Śliwińska-Wilczewska, S.; Latała, A. Zjawisko oddziaływania allelopatycznego pikoplanktonowej sinicy synechococcus sp. na nitkowate sinice geitlerinema amfibium i rivularia sp. Edukacja Biologiczna Środowiskowa 2017, 2, 3–9. (In Polish) [Google Scholar] [CrossRef]
Station | Exmax [nm] ± (5 nm)/Emmax [nm] ± (5 nm) | |||
---|---|---|---|---|
Natural Seawater | Polluted Seawater | |||
Peak 1 | Peak 2 | Peak 1 | Peak 2 | |
#1 | 225/355 | 225/340 | 275/335 | |
#2 | 225/350 | 225/340 | 275/335 | |
#3 | 225/350 | 272.5/335 | 225/340 | 275/335 |
#4 | 225/350 | 225/340 | 275/335 | |
#5 | 225/360 | 225/340 | 275/335 |
Station | FIo/w [-] | ||||
---|---|---|---|---|---|
Date | Beginning of June | Middle of June | End of June | Middle of July | |
#1 | 0.90 | 0.93 | 0.91 | 0.94 | |
#2 | 0.90 | 0.92 | 0.95 | 0.96 | |
#3 | 0.91 | 0.91 | 0.92 | 0.94 | |
#4 | 0.87 | 0.92 | 0.94 | 0.91 | |
#5 | 0.92 | 0.94 | 0.95 | 0.97 |
Station | FIo/w [-] | ||||
---|---|---|---|---|---|
Date | Beginning of June | Middle of June | End of June | Middle of July | |
#1 | 1.42 | 1.33 | 1.37 | 1.42 | |
#2 | 1.43 | 1.34 | 1.46 | 1.38 | |
#3 | 1.38 | 1.30 | 1.36 | 1.35 | |
#4 | 1.42 | 1.35 | 1.43 | 1.43 | |
#5 | 1.37 | 1.31 | 1.38 | 1.39 |
ro/w | FIw/o [-] | |||
---|---|---|---|---|
Beginning of June | Middle of June | End of June | Middle of July | |
0.5 × 10−6 | 1.33 | 1.18 | 1.09 | 1.27 |
5 × 10−6 | 1.39 | 1.26 | 1.38 | 1.32 |
50 × 10−6 | 1.42 | 1.33 | 1.37 | 1.42 |
500 × 10−6 | 1.41 | 1.37 | 1.39 | 1.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baszanowska, E.; Otremba, Z. Seawater Fluorescence Near Oil Occurrence. Sustainability 2020, 12, 4049. https://doi.org/10.3390/su12104049
Baszanowska E, Otremba Z. Seawater Fluorescence Near Oil Occurrence. Sustainability. 2020; 12(10):4049. https://doi.org/10.3390/su12104049
Chicago/Turabian StyleBaszanowska, Emilia, and Zbigniew Otremba. 2020. "Seawater Fluorescence Near Oil Occurrence" Sustainability 12, no. 10: 4049. https://doi.org/10.3390/su12104049
APA StyleBaszanowska, E., & Otremba, Z. (2020). Seawater Fluorescence Near Oil Occurrence. Sustainability, 12(10), 4049. https://doi.org/10.3390/su12104049