A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management
Abstract
:1. Introduction
2. Problems of Construction Management
- (a)
- The work is not carried out under controlled conditions, and therefore is highly dependent on weather conditions and other environmental conditions [28];
- (b)
- The information for a specific building site varies significantly depending on the size and importance of the designed building, its location, and whether the facilities to be provided are in an unmapped area or merely an expansion of the existing facilities [29];
- (c)
- Construction processes depend on the knowledge and abilities of the planners;
- (d)
- Safety: construction by nature is inherently dangerous, with a high degree of hazard and risk;
- (e)
- The threat has to be transferred to those people who best of all can control them. Stakeholders’ desires concern all expected risks in the contract. It serves no useful purpose to force an onerous, one-sided contract on contractors and sub-contractors taking all the risk in the contract;
- (f)
- Each project is unique. There is no same road to manage each project. Situations, people, and goals change over time. Never before has a project been available which has had the same circumstances and requirements. Situations, people, and purposes change over time. All new ideas and possible variants of decisions have to be compared by many criteria [30]. The complex nature of decision-making requires practitioners to select investment options by a broader palette of political reasons along with the analysis of a ratio of “expense effect” and purely technical reasons. In the economy and the development of the decision, it is essential that the impacts of cultural, social, moral, legislative, demographic, economic, ecological, state, and technological changes in the business world on the international, national, regional, and local markets are considered. The analysis of multi-criteria is a useful tool for many similar problems [31,32,33];
- (g)
- The construction business is the industry, which slowly accepts innovations. The choice of more effective technological systems in the building is a complex task with several criteria [34];
- (h)
- A client describes vaguely, continually changing requirements [35];
- (i)
- Clients are slow with communication [36];
- (j)
- Work is frequently seasonal;
- (k)
- The construction process is not defined as predictable;
- (l)
- Temporary restrictions. Time is money for the owner, building customer, and the user of the build facility. The delay in construction causes not only loss of profits, excesses of costs, and sometimes poor quality, but also many significant disputes, even full-time jobs, and many long-term challenges. A delay means the loss of the owner’s income, such as production, and other commercial facilities are at disposal not in due in time. Baldwin and Manthei [37] described 17 delay factors: weather, labor resources, subcontractors, constructive changes, plans, fund status, material shortage, manufactured items, type approvals, jurisdictional disputes, denial of equipment, contracts, construction mistakes, inspections, finance, solutions, and construction standards and building regulations. Other factors contributing to the construction slowdown are labor-management relations, strikes, poor organization, planning, coordination, deteriorating quality of craft, productivity, lack of craftsmen skills, quality of training, delivery delays, and the high cost of financing. Additionally, Arditi et al. [38], among other things, observed the following reasons for delays in public projects in Turkey: lack of materials, difficulties in receiving payments from agencies, contractors’ problems, and the specific characteristics of contractors and state institutions;
- (m)
- Socio-political pressure. Political pressure and society affect public and private sector employees to some extent;
- (n)
- The organization. The level of the structure should establish a formal system of human roles to achieve the goals of the company.
3. Model for Multi-Criteria Decision-Making in Construction Management
3.1. Multi-Criteria Methods and Construction Management
3.2. Model Development for Multi-Criteria Decision-making
4. Case Study: Turkish Construction Project Management—Sustainable Decision-Making: Finding the Best Contractor
4.1. Project Description and Problem Considered
- Oval shape;
- 25-m long;
- 10-m wide;
- 2.2-m deep.
- Good design;
- Good quality;
- Best financial options.
4.2. Making Alternatives
4.3. Setting the Criteria, Determining Their Values
- (1)
- technical experience,
- (2)
- record of performance,
- (3)
- financial stability,
- (4)
- the qualifications of the employees and the management,
- (5)
- capacity,
- (6)
- safety record, and
- (7)
- equipment and operation.
- Technical Experience (TE)—this shows the contractor’s experience in civil (TE1), electrical (TE2), mechanical (TE3), landscaping (TE4), and site (TE5) works. The project number is considered as an essential criterion. If the contractor has completed >20 projects, the evaluation can be considered as outstanding (OT), 15–10 very good (VG), 10–15 average (AV), 5–10 below average (BA), and fewer than five projects – unsatisfactory (UN).
- Performance Record (PE)—shows if the contractor usually completes projects on time (PE1) (always (AL), sometimes (SM), or rarely (RR), and will evaluate any quality (PE2) and cost control (PE3) systems, including the finished project quality (PE4). PE2, PE3 and PE4 are assessed as either outstanding (OT) or very good (VG), average (AV) or below average (BA), or unsatisfactory (UN).
- Financial Stability (FS)—evaluates such things as the contractor’s profitability (FS1), credit availability (FS2), as well as debt (FS3). Either high (HG), average (AV) or low (LW).
- Qualification of Management Employees (ME)—This evaluates the number of failures in the contractor’s projects (ME1) (never (0), 3 or less (≤3), more than 3 (>3), experience of managers (ME2) (less than 5 years (<5), from 5 to 10 years (5–10), more than 10 year (>10) and workers’ experience (ME3) (strong (S), moderate (M), poor (P).
- Capacity (CA)—This will evaluate the projects the contractor is working on (CA1) (less than 5 (<5), from 5 to 10 (5–10), more than 10 (>10), and the ability (capacity) to include this project (CA2) strong (S), moderate (M), and weak (W), as well as ongoing project status (CA3). Evaluation of status of current (ongoing) projects: ahead of schedule (SA), as scheduled (SO), behind schedule (SB), and stopped (SS).
- Safety Record (SR)—This is about the strengths of the safety program (SR1) (outstanding (OT) or very good (VG), average (AV) or below average (BA), or unsatisfactory (UN), number of accidents that happened in the last five years (SR2) (less than 5 (<5), from 5 to 10 (5–10), more than 10 (>10), and availability of safety training for new employees (SR3) (available (Yes), not available (No).
- Operation and Equipment (OE)—This shows the expertise of technical field employees (OE1) (outstanding (OT) or very good (VG), average (AV) or below average (BA), or unsatisfactory (UN) and equipment suitability (OE2). The secondary criteria, (e.g., technical field personnel abilities), are evaluated qualitatively, depending on the competencies of employees: very suitable (VS), average (AV), acceptable (AC), unsatisfactory (UN).
4.4. Calculation According to the Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, M.; Zhu, F.; Yang, X.; Wang, L.; Sun, X. Integrating Sustainability into Construction Engineering Projects: Perspective of Sustainable Project Planning. Sustainability 2018, 10, 784. [Google Scholar] [CrossRef]
- Aziz, R.F.; Hafez, S.M. Applying lean thinking in construction and performance improvement. Alex. Eng. J. 2013, 52, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Whyte, J.; Stasis, A.; Lindkvist, C. Managing change in the delivery of complex projects: Configuration management, asset information and ‘big data’. Int. J. Proj. Manag. 2015, 34, 339–351. [Google Scholar] [CrossRef]
- Hoda, R.; Murugesan, L.K. Multi-level agile project management challenges: A self-organizing team perspective. J. Syst. Softw. 2016, 117, 245–257. [Google Scholar] [CrossRef]
- Sarma, S.P. Professional Management; New Age International Pvt Ltd.: Calcuta, India, 1998. [Google Scholar]
- Confucius. The Doctrine of the Mean; Translated by James Legge; The University of Adelaide: Adelaide, Australia, 2014. [Google Scholar]
- Schoemaker, P.J.H.; Russo, J.E. A pyramid of decision approaches. Calif. Manag. Rev. 1993, 36, 9–31. [Google Scholar] [CrossRef]
- Carter, C.F.; Williams, B.R. Industry and Technical Progress: Factors Governing the Speed of Application of Science; Oxford University Press: London, UK, 1957. [Google Scholar]
- Levitt, T. Marketing Myopia. Harv. Bus. Rev. 1960, 38, 45–56. [Google Scholar] [CrossRef]
- Dickson, G.W. An analysis of vendor selection systems and decisions. J. Purch. 1966, 2, 5–17. [Google Scholar] [CrossRef]
- Strauss, G. Tactics of lateral relationships. Adm. Sci. Q. 1962, 7, 161–186. [Google Scholar] [CrossRef]
- Pretzsch, J. Paradigms of tropical forestry in rural development. In Forests and Rural Development; Springer: Berlin/Heidelberg, Germany, 2014; pp. 7–49. [Google Scholar]
- Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Development of performance criteria for sustainability evaluation of modular versus conventional construction methods. J. Clean. Prod. 2017, 142, 3592–3606. [Google Scholar] [CrossRef]
- Heravi, G.; Fathi, M.; Faeghi, S. Multi-criteria group decision-making method for optimal selection of sustainable industrial building options focused on petrochemical projects. J. Clean. Prod. 2017, 142, 2999–3013. [Google Scholar] [CrossRef]
- Rashid, K.; Razzaq, A.; Ahmad, M.; Rashid, T.; Tariq, S. Experimental and analytical selection of sustainable recycled concrete with ceramic waste aggregate. Constr. Build. Mater. 2017, 154, 829–840. [Google Scholar] [CrossRef]
- Diaz-Sarachaga, J.M.; Jato-Espino, D.; Castro-Fresno, D. Methodology for the development of a new Sustainable Infrastructure Rating System for Developing Countries (SIRSDEC). Environ. Sci. Policy 2017, 69, 65–72. [Google Scholar] [CrossRef]
- Bansal, S.; Biswas, S.; Singh, S.K. Fuzzy decision approach for selection of most suitable construction method of Green Buildings. Int. J. Sustain. Built Environ. 2017, 6, 122–132. [Google Scholar] [CrossRef]
- Vassoney, E.; Mochet, A.M.; Comoglio, C. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management. J. Environ. Manag. 2017, 196, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Nepal, M.P.; Skitmore, M.; Attarzadeh, M. Current research trends and application areas of fuzzy and hybrid methods to the risk assessment of construction projects. Adv. Eng. Inform. 2017, 33, 112–131. [Google Scholar] [CrossRef]
- Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring systems sustainability with multi-criteria methods: A critical review. Eur. J. Oper. Res. 2017, 258, 607–616. [Google Scholar] [CrossRef]
- Myers, J.H.; Alpert, M.I. Determinant buying attitudes: Meaning and measurement. J. Mark. 1968, 32, 13–20. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Wu, J. A SD-IITFOWA operator and TOPSIS based approach for MAGDM problems with intuitionistic trapezoidal fuzzy numbers. Technol. Econ. Dev. Econ. 2015, 21, 28–47. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vilutienė, T.; Turskis, Z.; Tamošaitienė, J. Contractor selection for construction works by applying SAW-G and TOPSIS grey techniques. J. Bus. Econ. Manag. 2010, 11, 34–55. [Google Scholar] [CrossRef]
- Makovšek, D. Systematic construction risk, cost estimation mechanism and unit price movements. Transp. Policy 2014, 35, 135–145. [Google Scholar] [CrossRef]
- Fouladgar, M.M.; Yazdani-Chamzini, A.; Lashgari, A.; Zavadskas, E.K.; Turskis, Z. Maintenance strategy selection using AHP and COPRAS under fuzzy environment. Int. J. Strateg. Prop. Manag. 2012, 16, 85–104. [Google Scholar] [CrossRef]
- Peldschus, F.; Zavadskas, E.K.; Turskis, Z.; Tamošaitienė, J. Sustainable assessment of construction site by applying game theory. Inz. Ekon.-Eng. Econ. 2010, 21, 223–237. [Google Scholar]
- Turskis, Z.; Zavadskas, E.K.; Peldschus, F. Multi-criteria optimization system for decision making in construction design and management. Inz. Ekon.-Eng. Econ. 2009, 61, 7–17. [Google Scholar]
- Zagorskas, J.; Zavadskas, E.K.; Turskis, Z.; Burinskienė, M.; Blumberga, A.; Blumberga, D. Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy Build. 2014, 78, 35–42. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K.; Peldschus, F.; Turskis, Z. Multi-objective decision-making for road design. Transport 2008, 23, 183–193. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Volvačiovas, R.; Kildienė, S. Multi-criteria assessment model of technologies. Stud. Inform. Control 2013, 22, 249–258. [Google Scholar] [CrossRef]
- Sivilevičius, H.; Zavadskas, E.K.; Turskis, Z. Quality attributes and complex assessment methodology of the asphalt mixing plant. Balt. J. Road Bridge Eng. 2008, 3, 161–166. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Kalibatas, D. An approach to multi-attribute assessment of indoor environment before and after refurbishment of dwellings. J. Environ. Eng. Landsc. Manag. 2009, 17, 5–11. [Google Scholar] [CrossRef]
- Baldwin, J.R.; Manthei, J.M. Causes of delays in the construction industry. ASCE J. Constr. Div. 1971, 97, 177–187. [Google Scholar]
- Arditi, R.D.; Akan, G.T.; Gurdamar, S. Reasons for delays in public projects in Turkey. Constr. Manag. Econ. 1985, 3, 171–181. [Google Scholar] [CrossRef]
- Senaratne, S.; Sexton, M. Managing construction project change: A knowledge management perspective. Constr. Manag. Econ. 2008, 26, 1303–1311. [Google Scholar] [CrossRef]
- Köksalan, M.M.; Wallenius, J.; Zionts, S. Multiple Criteria Decision Making: From Early History to the 21st Century; World Scientific: Singapore, 2011. [Google Scholar]
- Kahraman, C.; Onar, S.C.; Oztaysi, B. Fuzzy multicriteria decision-making: A literature review. Int. J. Comput. Intell. Syst. 2015, 8, 637–666. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. Multiple criteria decision making (MCDM) methods in economics: An overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res.-Ekon. Istraz. 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Ye, K.; Zeng, D.; Wong, J. Competition rule of the multi-criteria approach: What contractors in China really want? J. Civ. Eng. Manag. 2018, 24, 155–166. [Google Scholar] [CrossRef]
- De la Fuente, A.; Armengou, J.; Pons, O.; Aguado, A. Multi-criteria decision-making model for assessing the sustainability index of wind-turbine support systems: Application to a new precast concrete alternative. J. Civ. Eng. Manag. 2017, 23, 194–203. [Google Scholar] [CrossRef]
- Leśniak, A.; Kubek, D.; Plebankiewicz, E.; Zima, K.; Belniak, S. Fuzzy AHP application for supporting contractors’ bidding decision. Symmetry 2018, 10, 642. [Google Scholar] [CrossRef]
- Prascevic, N.; Prascevic, Z. Application of fuzzy AHP for ranking and selection of alternatives in construction project management. J. Civ. Eng. Manag. 2017, 23, 1123–1135. [Google Scholar] [CrossRef]
- Chen, C.J.; Juan, Y.K.; Hsu, Y.H. Developing a systematic approach to evaluate and predict building service life. J. Civ. Eng. Manag. 2017, 23, 890–901. [Google Scholar] [CrossRef]
- Štreimikienė, D.; Šliogerienė, J.; Turskis, Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renew. Energy 2016, 85, 148–156. [Google Scholar] [CrossRef]
- Shariati, S.; Abedi, M.; Saedi, A.; Yazdani-Chamzini, A.; Tamošaitienė, J.; Šaparauskas, J.; Stupak, S. Critical factors of the application of nanotechnology in construction industry by using ANP technique under fuzzy intuitionistic environment. J. Civ. Eng. Manag. 2017, 23, 914–925. [Google Scholar] [CrossRef]
- Kalibatas, D.; Kovaitis, V. Selecting the most effective alternative of waterproofing membranes for multifunctional inverted flat roofs. J. Civ. Eng. Manag. 2017, 23, 650–660. [Google Scholar] [CrossRef]
- Gardziejczyk, W.; Zabicki, P. Normalization and variant assessment methods in selection of road alignment variants–case study. J. Civ. Eng. Manag. 2017, 23, 510–523. [Google Scholar] [CrossRef]
- Bielinskas, V.; Burinskienė, M.; Podviezko, A. Choice of abandoned territories conversion scenario according to MCDA methods. J. Civ. Eng. Manag. 2018, 24, 79–92. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Zavadskas, E.K.; Kaklauskas, A. Determination of an efficient contractor by using the new method of multicriteria assessment. In International Symposium for “The Organisation and Management of Construction”. Shaping Theory and Practice. Managing the Construction Project and Managing Risk; Langford, D.A., Retik, A., Eds.; CIBW: London, UK, 1996; Volume 65, pp. 95–104. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z.; Tamošaitienė, J.; Marina, V. Multicriteria selection of project managers by applying grey criteria. Technol. Econ. Dev. Econ. 2008, 14, 462–477. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K.; Kutut, V. A model based on ARAS-G and AHP methods for multiple criteria prioritizing of heritage value. Int. J. Inf. Technol. Decis. Mak. 2013, 12, 45–73. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. The MOORA method and its application to privatization in a transition economy. Control Cybern. 2006, 35, 445–469. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project management by MULTIMOORA as an instrument for transition economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new Step-Wise Weight Assessment Ratio Analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antuchevičienė, J.; Zakarevičius, A. Optimization of weighted aggregated sum product assessment. Elektron. Elektrotechnika 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Krylovas, A.; Zavadskas, E.K.; Kosareva, N.; Dadelo, S. New KEMIRA method for determining criteria priority and weights in solving MCDM Problem. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 1119–1133. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M. Development of TOPSIS method to solve complicated decision-making problems—An overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Balli, S.; Korukoglu, S. Operating system selection using fuzzy AHP and TOPSIS Methods. Math. Comput. Appl. 2009, 14, 119–130. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, H.; Feng, Y.; Wang, D.; Peng, Y.; Jia, H. Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method. Renew. Sustain. Energy Rev. 2018, 81, 682–692. [Google Scholar] [CrossRef]
- Olson, D.L. Comparison of weights in TOPSIS Models. Math. Comput. Model. 2004, 40, 721–727. [Google Scholar] [CrossRef]
- Karimi, A.P.; Mehrdadi, N.; Hashemian, S.J.; Bidhendi, G.R.; Moghaddam, R.T. Using the fuzzy TOPSIS and fuzzy AHP methods for wastewater treatment process selection. Int. J. Acad. Res. 2011, 3, 737–745. [Google Scholar]
- Escrig-Olmedo, E.; Rivera-Lirio, J.M.; Muñoz-Torres, M.J.; Fernández-Izquierdo, M.Á. Integrating multiple ESG investors’ preferences into sustainable investment: A fuzzy multicriteria methodological approach. J. Clean. Prod. 2017, 162, 1334–1345. [Google Scholar] [CrossRef]
- Khoshnava, S.M.; Rostami, R.; Valipour, A.; Ismail, M.; Rahmat, A.R. Rank of green building material criteria based on the three pillars of sustainability using the hybrid multi criteria decision making method. J. Clean. Prod. 2018, 173, 82–99. [Google Scholar] [CrossRef]
- Khan, M.I. Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J. Clean. Prod. 2018, 172, 1035–1052. [Google Scholar] [CrossRef]
- Mavi, R.K.; Standing, C. Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach. J. Clean. Prod. 2018, 194, 751–765. [Google Scholar] [CrossRef]
- Dursun, M.; Arslan, Ö. An Integrated Decision Framework for Material Selection Procedure: A Case Study in a Detergent Manufacturer. Symmetry 2018, 10, 657. [Google Scholar] [CrossRef]
- Jaśkowski, P.; Sobotka, A.; Czarnigowska, A. Decision model for planning material supply channels in construction. Autom. Constr. 2018, 90, 235–242. [Google Scholar] [CrossRef]
- Medineckiene, M.; Zavadskas, E.K.; Björk, F.; Turskis, Z. Multi-criteria decision-making system for sustainable building assessment/certification. Arch. Civ. Mech. Eng. 2015, 15, 11–18. [Google Scholar] [CrossRef]
- Pan, N. Fuzzy AHP approach for selecting the suitable bridge construction method. J. Autom. Constr. 2008, 17, 958–965. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Bagočius, V. Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Appl. Soft Comput. 2015, 26, 180–192. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Zavadskas, E.K.; Turskis, Z. Design of products with both International and Local perspectives based on Yin-Yang balance theory and SWARA method. Econ. Res.-Ekon. Istraživanja 2013, 26, 153–166. [Google Scholar] [CrossRef]
- Jadidi, O.; Firouzi, F.; Bagliery, E. TOPSIS method for supplier selection problem. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2010, 4, 2198–2200. [Google Scholar]
- Polat, G.; Eray, E.; Bingol, B.N. An integrated fuzzy MCGDM approach for supplier selection problem. J. Civ. Eng. Manag. 2017, 23, 926–942. [Google Scholar] [CrossRef]
- Sonmez, M.; Yang, J.B.; Holt, G.D. Addressing the contractor selection problem using an evidential reasoning approach. Eng. Constr. Archit. Manag. 2001, 8, 198–210. [Google Scholar] [CrossRef]
- AGC of America. Qualifications Based Selection of Contractors; AGC of America: Arlington, VA, USA, 2001. [Google Scholar]
- Sandquist, R.S. Qualifications-Based vs. Low-Bid Contractor Selection. 2007. Available online: http://www.aia.org/aiaucmp/groups/ek_members/documents/pdf/aiap017687.pdf (accessed on 11 June 2018).
- Yawei, L.; Shouyu, C.; Xiangtian, N. Fuzzy Pattern Recognition Approach to Construction Contractor Selection. Fuzzy Optim. Decis. Mak. 2005, 4, 103–118. [Google Scholar] [CrossRef]
- Taylan, O.; Kabli, M.R.; Porcel, C.; Herrera-Viedma, E. Contractor Selection for Construction Projects Using Consensus Tools and Big Data. Int. J. Fuzzy Syst. 2018, 20, 1267–1281. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K.; Antucheviciene, J.; Kosareva, N. A hybrid model based on fuzzy AHP and fuzzy WASPAS for construction site selection. Int. J. Comput. Commun. Control 2015, 10, 113–128. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antuchevičienė, J. Selecting a contractor by using a novel method for multiple attribute analysis: Weighted Aggregated Sum Product Assessment with grey values (WASPAS-G). Stud. Inform. Control 2015, 24, 141–150. [Google Scholar] [CrossRef]
Considered Problem | Information Type | Multiple Criteria Method Used | Reference |
---|---|---|---|
Construction project selection | Q/Q | COPRAS-G 1 | [59] |
F | TOPSIS | [66] | |
Choice of operating system | F | TOPSIS, AHP | [67] |
Service selection | F | Grey correlation TOPSIS, AHP | [68] |
Selection of grippers, Selection for financial investments, Selecting robotic processes, Comparing company performances, Comparing financial ratio performance | F | TOPSIS | [69] |
Wastewater treatment process selection | F | TOPSIS, AHP | [70] |
Selection of sustainable investment | F | TOPSIS | [71] |
Green building material selection | F | ANP 2, DEMATEL | [72] |
Determination of strategic priorities by analysis of strengths, weaknesses, opportunities and threats (SWOT) | F | Goal Programming | [73] |
Project management critical success factors | F | ANP, DEMATEL | [74] |
Material selection and new product development | F | COPRAS | [75] |
Choice of the action plan and dynamic supplier selection | F | Mixed integer linear programming | [76] |
Sustainable building assessment/certification | Q/Q | ARAS | [77] |
Selection of suitable bridge construction method | F | AHP | [78] |
Selection of construction site | F | ARAS and AHP | [79] |
Design of products | Q/Q | Yin-Yang balance, SWARA | [80] |
Supplier selection | F | TOPSIS | [81] |
F | TOPSIS, AHP | [82] | |
Contractor selection | F | AHP, PERT 3 | [83] |
Q/Q | QBS 4 | [84] | |
Q/Q | QBS, Low Bid | [85] | |
F | MFPR 5 | [86] | |
F | TOPSIS, AHP | [87] | |
Q/Q | Best-Value, AHP | [88] |
Criteria | Sub-Criteria | Evaluation | ||||
---|---|---|---|---|---|---|
TE | TE1 | OT | VG | AV | BA | UN |
TE2 | OT | VG | AV | BA | UN | |
TE3 | OT | VG | AV | BA | UN | |
TE4 | OT | VG | AV | BA | UN | |
TE5 | OT | VG | AV | BA | UN | |
PE | PE1 | AL | SM | RR | - | - |
PE2 | OT | VG | AV | BA | UN | |
PE3 | OT | VG | AV | BA | UN | |
PE4 | OT | VG | AV | BA | UN | |
FS | FS1 | HG | AV | LW | - | - |
FS2 | HG | AV | LW | - | - | |
FS3 | HG | AV | LW | - | - | |
ME | ME1 | 0 | ≤3 | >3 | - | - |
ME2 | <5 | 5–10 | >10 | - | - | |
ME3 | S | M | P | - | - | |
CA | CA1 | <5 | 5–10 | >10 | - | - |
CA2 | S | M | W | - | - | |
CA3 | SA | SO | SB | SS | - | |
SR | SR1 | OT | VG | AV | BA | UN |
SR2 | <5 | 5–10 | >10 | - | - | |
SR3 | Yes | No | - | - | - | |
OE | OE1 | OT | VG | AV | BA | UN |
OE2 | VS | AV | AC | UN | - |
Criteria | TE | PE | FS | ME | CA | SR | OE | Criteria Weights |
---|---|---|---|---|---|---|---|---|
TE | 1 | 2 | 5 | 5 | 6 | 6 | 2 | 0.33 |
PE | - | 1 | 6 | 6 | 7 | 6 | 2 | 0.29 |
FS | - | - | 1 | 1 | 3 | 3 | 1 | 0.09 |
ME | - | - | - | 1 | 4 | 3 | 1/3 | 0.08 |
CA | - | - | - | - | 1 | 2 | 1/5 | 0.04 |
SR | - | - | - | - | - | 1 | 1/4 | 0.03 |
OE | - | - | - | - | - | - | 1 | 0.15 |
Σ: | 1 | |||||||
CR = 0.05 |
Criteria | Weight | Sub-Criteria | Weight |
---|---|---|---|
TE | 0.33 | TE1 | 0.19 |
TE2 | 0.02 | ||
TE3 | 0.07 | ||
TE4 | 0.02 | ||
TE5 | 0.03 | ||
PE | 0.29 | PE1 | 0.07 |
PE2 | 0.07 | ||
PE3 | 0.07 | ||
PE4 | 0.07 | ||
FS | 0.09 | FS1 | 0.02 |
FS2 | 0.05 | ||
FS3 | 0.02 | ||
ME | 0.08 | ME1 | 0.06 |
ME2 | 0.01 | ||
ME3 | 0.01 | ||
CA | 0.04 | CA1 | 0.01 |
CA2 | 0.01 | ||
CA3 | 0.02 | ||
SR | 0.03 | SR1 | 0.01 |
SR2 | 0.02 | ||
SR3 | 0.00 | ||
OE | 0.15 | OE1 | 0.15 |
OE2 | 0.00 |
Criteria | Sub-Criteria | Contractor | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | ||
TE | TE1 | VG | VG | OT | AV | AV |
TE2 | VG | VG | OT | BA | AV | |
TE3 | VG | VG | OT | BA | AV | |
TE4 | VG | VG | OT | BA | AV | |
TE5 | VG | VG | OT | AV | AV | |
PE | PE1 | SM | SM | AL | RR | SM |
PE2 | VG | AV | VG | UN | AV | |
PE3 | AV | AV | VG | UN | BA | |
PE4 | VG | VG | OT | BA | AV | |
FS | FS1 | AV | HG | HG | LW | AV |
FS2 | AV | HG | AV | LW | LW | |
FS3 | LW | LW | LW | LW | AV | |
ME | ME1 | ≤3 | 0 | 0 | >3 | 0 |
ME2 | >10 | 5–10 | >10 | <5 | 5–10 | |
ME3 | M | M | M | P | M | |
CA | CA1 | <5 | 5–10 | >10 | <5 | >10 |
CA2 | S | M | W | S | W | |
CA3 | SB | SO | SO | SB | SB | |
SR | SR1 | BA | BA | AV | UN | UN |
SR2 | <5 | <5 | >10 | 5–10 | >10 | |
SR3 | No | No | Yes | No | No | |
OE | OE1 | AV | AV | VG | BA | BA |
OE2 | AV | AV | VS | UN | AC |
Criteria | Sub-Criteria | Contractor | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | ||
TE | TE1 | 0.10 | 0.10 | 0.02 | 0.05 | 0.05 |
TE2 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | |
TE3 | 0.04 | 0.04 | 0.03 | 0.01 | 0.02 | |
TE4 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | |
TE5 | 0.02 | 0.02 | 0.03 | 0.01 | 0.01 | |
PE | PE1 | 0.02 | 0.02 | 0.07 | 0.01 | 0.02 |
PE2 | 0.04 | 0.02 | 0.04 | 0.01 | 0.02 | |
PE3 | 0.02 | 0.02 | 0.04 | 0.01 | 0.01 | |
PE4 | 0.04 | 0.04 | 0.07 | 0.01 | 0.02 | |
FS | FS1 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 |
FS2 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | |
FS3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
ME | ME1 | 0.01 | 0.06 | 0.06 | 0.01 | 0.06 |
ME2 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | |
ME3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CA | CA1 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
CA2 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | |
CA3 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
SR | SR1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
SR2 | 0.02 | 0.02 | 0.00 | 0.01 | 0.00 | |
SR3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
OE | OE1 | 0.02 | 0.02 | 0.05 | 0.01 | 0.01 |
OE2 | 0.02 | 0.02 | 0.05 | 0.00 | 0.01 | |
Σ | 0.40 | 0.47 | 0.55 | 0.15 | 0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdogan, S.A.; Šaparauskas, J.; Turskis, Z. A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management. Sustainability 2019, 11, 2239. https://doi.org/10.3390/su11082239
Erdogan SA, Šaparauskas J, Turskis Z. A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management. Sustainability. 2019; 11(8):2239. https://doi.org/10.3390/su11082239
Chicago/Turabian StyleErdogan, Seyit Ali, Jonas Šaparauskas, and Zenonas Turskis. 2019. "A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management" Sustainability 11, no. 8: 2239. https://doi.org/10.3390/su11082239
APA StyleErdogan, S. A., Šaparauskas, J., & Turskis, Z. (2019). A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management. Sustainability, 11(8), 2239. https://doi.org/10.3390/su11082239