Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures
Abstract
:1. Introduction
- (1)
- What is the best suited method for constructing future IDF curves based on scaling laws;
- (2)
- Investigating how geographical variations will influence the performance of local stormwater measures in a future climate.
2. Materials and Methods
2.1. Study Sites
2.2. Metrorological Input Data
2.3. Temporal Downscaling
2.4. Low-Impact Development (LID) Performance Assessment
2.5. Daily Time-Step Models
Rt = 0 Rt = Pt − (Smax – St−1) − AETt | St−1 + Pt − AETt ≤ Smax St−1 + Pt − AETt > Smax | (4) |
St = St−1 + Pt − AETt St = Smax | St−1 + Pt − AETt ≤ Smax St−1 + Pt − AETt > Smax | (5) |
PETt = 0.408 ∗ Re ∗ [0.01 ∗ (Tt + 5)] | (6) | |
AETt = PETt ∗ Ccrop ∗ St−1/Smax | (7) | |
t = Timestep (d) R = Runoff (mm/d) P = Precipitation (mm/d) Smax = Maximum storage capacity (mm) S = Used storage (mm) PET = Potential evapotranspiration (mm/d) | AET Actual evapotranspiration (mm/d) Re = Extra-terrestrial radiation (MJ/m2∗d) derived from Julian day and latitude T = Temperature (°C) Ccrop = Crop coefficient |
Initial values: Qinnt = Pt ∗ (AB + AC)/1000 AETt = PETt ∗ AB/1000 Q1t = Inf1 ∗ AB ∗ 1.7 h/100 Q2t = Inf2 ∗ AB ∗ 24 h/100 | ||
S1t = S1t−1 + Qinnt − AETt – Q1t If S1t > V1max S1t = V1max and Qov = S1t−1 + Qinnt − AETt – Q1t − V1max If S1t < 0 S1t = 0 and Q1t = S1t−1 + Qinnt – AETt If Q1t < 0 AETt = S1t−1 + Qinnt | (8) | |
S2t = S2t−1 + Q1t – Q2t If S2t > V2max S2t = V2max and Qdt = S2t−1 + Q1t – Q2t –V2max If S2t < 0 S2t = 0 and Q2t = S2t−1 + Q1t | (9) | |
t = Timestep (d) Qinn = Inflow (m3/d) AB = Area bioretention (m2) AC = Area catchment (m2) AET = Actual evapotranspiration (m3/d) Q1 = Infiltration flow bioretention media (m3/d) Inf1 = Infiltration rate bioretention media (cm/h) Q2 = Infiltration flow native soil (m3/d) | Inf2 = Infiltration rate native soil (cm/h) Qov = Overflow (m3/d) Qd = Flow through drain (m3/d) S1 = Used above surface storage S1 (m3) V1max = Maximum above surface storage (m3) S2 = Used sub surface storage (m3) V2max = Maximum sub surface storage (m3) |
2.6. Design Event Models
3. Results and Discussion
3.1. Temporal Downscaling
3.2. Projected Future Climate
3.3. LID Performance: Volume and Pollution Control
3.4. LID Performance: Peak Flow Control
3.5. LID Performance: Combined Measures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- US Environmental Protection Agency. Stormwater Management for Federal Facilities under Section 438 of the Energy Independence and Security Act; US Environmental Protection Agency: Washington, DC, USA, 2009.
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Willems, P.; Olsson, J.; Arnbjerg-Nielsen, K.; Beecham, S.; Pathirana, A.; Gregersen, I.B.; Madsen, H.; Nguyen, V.-T.-V. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems; IWA Publishing: London, UK, 2012; ISBN 9781780401263. [Google Scholar]
- Petrucci, G.; Rioust, E.; Deroubaix, J.-F.; Tassin, B. Do stormwater source control policies deliver the right hydrologic outcomes? J. Hydrol. 2013, 485, 188–200. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Goff, K.M.; Gentry, R.W. The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds. Water Resour. Manag. 2006, 20, 829–860. [Google Scholar] [CrossRef]
- Emerson, C.H.; Welty, C.; Traver, R.G. Watershed-Scale Evaluation of a System of Storm Water Detention Basins. J. Hydrol. Eng. 2005, 10, 237–242. [Google Scholar] [CrossRef]
- Dietz, M.E.; Arnold, C.L. Can Green Infrastructure Provide Both Water Quality and Flood Reduction Benefits? J. Sustain. Water Built Environ. 2018, 4, 02518001. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damodaram, C.; Giacomoni, M.H.; Prakash Khedun, C.; Holmes, H.; Ryan, A.; Saour, W.; Zechman, E.M. Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 907–918. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Palla, A.; Gnecco, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. J. Hydrol. 2015, 528, 361–368. [Google Scholar] [CrossRef]
- Thomas, N.W.; Arenas Amado, A.; Schilling, K.E.; Weber, L.J. Evaluating the efficacy of distributed detention structures to reduce downstream flooding under variable rainfall, antecedent soil, and structural storage conditions. Adv. Water Resour. 2016, 96, 74–87. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, X.; Zhu, Z.; Chen, X. Evaluating the Effects of Low Impact Development Practices on Urban Flooding under Different Rainfall Intensities. Water 2017, 9, 548. [Google Scholar] [CrossRef]
- Qin, H.; Li, Z.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilroy, K.L.; McCuen, R.H. Spatio-temporal effects of low impact development practices. J. Hydrol. 2009, 367, 228–236. [Google Scholar] [CrossRef]
- The City of Bergen. Retningslinjer for Overvannshåndtering i Bergen Kommune [Guidelines for Surfacewater Management in the City of Bergen]. 2005. Available online: https://www.bergen.kommune.no/bk/multimedia/archive/00010/Retningslinjer_for_o_10779a.pdf (accessed on 25 February 2019).
- The City of Stavanger. Kommunaltekniske Normer for Vann- og avløpsanlegg. Vedlegg 9 Overvannshåndtering [Water and Wastewater Norm. Attachment 9. Stormwater Management]. 2017. Available online: http://www.va-norm.no/stavanger/ (accessed on 25 February 2019).
- The City of Trondheim. VA-norm. Vedlegg 5. Beregning av overvannsmengde Dimensjonering av ledning og fordrøyningsvolum [Water and Wastewater Norm. Attachment 5. Calculation of stormwater flows. Design of pipes and detention basins]. 2015. Available online: http://www.va-norm.no/trondheim/ (accessed on 25 February 2019).
- The City of Copenhagen. Cloudburst Management Plan 2012. 2012. Available online: https://en.klimatilpasning.dk/media/665626/cph_-_cloudburst_management_plan.pdf (accessed on 25 February 2019).
- Norges Offentlige Utredninger. Overvann i byer og tettsteder. Som problem og ressurs (NOU 2015:16) [Stormwater in Urban Areas. Problem and Resource (Norwegian Public Investigation)]; Departementenes sikkerhets- og serviceorganisasjon Informasjonsforvaltning: Oslo, Norway, 2015.
- The City of Oslo. Strategi for overvannshåndtering i Oslo 2013-2030 [Strategy for stormwater management]; The City of Oslo: Oslo, Norway, 2013. [Google Scholar]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater. J. Hydrol. 2008, 350, 114–125. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.-G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; Venema, V.K.C.; et al. Precipitation downscaling under climate change: Recent developements to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–38. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkingsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef] [Green Version]
- Benestad, R.E.; Chen, D.; Hanssen-bauer, I. Empirical-Statistical Downscaling; World Scientific Publishing Co. Inc.: Singapore, 2007. [Google Scholar]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Willems, P. Compound IDF-relationships of extreme precipitation for two seasons and two storm types. J. Hydrol. 2000, 233, 189–205. [Google Scholar] [CrossRef]
- Nguyen, V.-T.-V.; Nguyen, T.-D.; Cung, A. A statistical approach to downscaling of sub-daily extreme rainfall processes for climate-related impact studies in urban areas. Water Sci. Technol. Water Supply 2007, 7, 183. [Google Scholar] [CrossRef]
- Herath, S.M.; Sarukkalige, P.R.; Van Nguyen, V.T. A spatial temporal downscaling approach to development of IDF relations for Perth airport region in the context of climate change. Hydrol. Sci. J. 2016, 61, 2061–2070. [Google Scholar] [CrossRef]
- Kristvik, E.; Kleiven, G.H.; Lohne, J.; Muthanna, T.M. Assessing the robustness of raingardens under climate change using SDSM and temporal downscaling. Water Sci. Technol. 2018, 77, 1640–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munkerud, M.Y. Assessing the performance of a combined sewer system under climate change using temporal downscaling. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, June 2018. [Google Scholar]
- Johannessen, B.G.; Hanslin, H.M.; Muthanna, T.M. Green roof performance potential in cold and wet regions. Ecol. Eng. 2017, 106, 436–447. [Google Scholar] [CrossRef]
- The Norwegian Mapping Authority. Creative Commons Attribution ShareAlike 3.0. 2016. Available online: http://data.kartverket.no/download/content/illustrasjonskart (accessed on 15 December 2016).
- Norwegian Meteorological Institute. eKlima. 2018. Available online: http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL (accessed on 3 September 2018).
- Wong, W.K.; Haddeland, I.; Lawrence, D.; Beldring, S. Gridded 1 × 1 km Climate and Hydrological Projections for Norway Gridded 1 × 1 km Climate and Hydrological Projections for Norway; Norwegian Water and Energy Directorate: Oslo, Norway, 2016; ISBN 978-82-410-1512-0.
- Gupta, V.K.; Waymire, E. Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res. 1990, 95, 1999. [Google Scholar] [CrossRef]
- Arnbjerg-Nielsen, K.; Willems, P.; Olsson, J.; Beecham, S.; Pathirana, A.; Bülow Gregersen, I.; Madsen, H.; Nguyen, V.-T.-V. Impacts of climate change on rainfall extremes and urban drainage systems: A review. Water Sci. Technol. 2013, 68, 16. [Google Scholar] [CrossRef] [PubMed]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values, 1st ed.; Springer: Bristol, UK, 2001; ISBN 978-1-4471-3675-0. [Google Scholar]
- Anagnostopoulou, C.; Tolika, K. Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theor. Appl. Climatol. 2012, 107, 479–489. [Google Scholar] [CrossRef]
- Ragulina, G.; Reitan, T. Generalized extreme value shape parameter and its nature for extreme precipitation using long time series and the Bayesian approach. Hydrol. Sci. J. 2017, 62, 863–879. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. Rainfall extremes: Toward reconciliation after the battle of distributions. Water Resour. Res. 2014, 50, 336–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friederichs, P. Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 2010, 13, 109–132. [Google Scholar] [CrossRef]
- Hope, A.C.A. A simplified Monte Carlo significance test procedure. J. R. Stat. Soc. Ser. B 1968, 30, 582–598. [Google Scholar] [CrossRef]
- Ribatet, M. A User’s Guide to the POT Package (Version 1.4). 2006. Available online: https://cran.r-project.org/web/packages/POT/vignettes/POT.pdf (accessed on 25 February 2019).
- Lindholm, O.; Endresen, S.; Thorolfsson, S.; Sægrov, S.; Jakobsen, G.; Aaby, L. Veiledning i klimatilpasset overvannshåndtering [Guide for Climate Addapted Stormwater Management]; Norsk Vann: Hamar, Norway, 2009. [Google Scholar]
- Watt, E.; Marsalek, J. Critical review of the evolution of the design storm event concept. Can. J. Civ. Eng. 2013, 40, 105–113. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Johannessen, B.; Muthanna, T.; Braskerud, B.; Johannessen, B.G.; Muthanna, T.M.; Braskerud, B.C. Detention and Retention Behavior of Four Extensive Green Roofs in Three Nordic Climate Zones. Water 2018, 10, 671. [Google Scholar] [CrossRef]
- Direktoratet for Byggkvalitet (DiBK). Byggteknisk forskrift med veiledning (TEK10) [Building construction regulation (TEK17)]. 2017. Available online: https://dibk.no/byggeregler/tek/ (accessed on 25 February 2019).
- Minnesota Pollution Control Agency (MPCA). Minneasota Storm Water Manual. 2018. Available online: https://www.pca.state.mn.us/water/minnesotas-stormwater-manual (accessed on 25 February 2019).
- Paus, K.H.; Braskerud, B.C. Suggestions for Designing and Constructing Bioretention Cells for a Nordic Climate. VATTEN - J. Water Manag. Res. 2014, 70, 139–150. [Google Scholar]
- Gao, J.; Pan, J.; Hu, N.; Xie, C. Hydrologic performance of bioretention in an expressway service area. Water Sci. Technol. 2018, 77, 1829–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paus, K.H.; Muthanna, T.M.; Braskerud, B.C. The hydrological performance of bioretention cells in regions with cold climates: seasonal variation and implications for design. Hydrol. Res. 2016, 47, 291–304. [Google Scholar] [CrossRef]
- Solheim, E.B. Infiltration for Sustainable Urban Drainage Systems (SUDS)—An Assessment of Methods for Site Specific Infiltration Measurements. Master’s Thesis, Norwegian University of Life Sciences (NMBU), Ås, Norway, January 2017. [Google Scholar]
- Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Andréassian, V.; Anctil, F.; Loumagne, C. Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J. Hydrol. 2005, 303, 290–306. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Rossman, L.A. StormWater Magagement Model User’s Manual (Version 5.1); US EPA Office of Research and Development: Washington, DC, USA, 2015.
- Johannessen, B.G.; Hamouz, V.; Gragne, A.S.; Muthanna, T.M. The transferability of SWMM model parameters between green roofs with similar build-up. J. Hydrol. 2019, 569, 816–828. [Google Scholar] [CrossRef]
- Severson, L.; Atchison, D. RECARGA User ’s Manual (Version 2.3). 2004. Available online: https://dnr.wi.gov/topic/stormwater/documents/InfStdsTools/RECARGA2-3User_Manual.pdf (accessed on 25 February 2019).
- Butler, D.; Davies, J.W. Chapter 14: Storage. In Urban Drainage; Spon Press: London, UK, 2011. [Google Scholar]
- The City of Oslo. Overvannshåndtering. En veileder for utbygger [Stormwater management. A guideline for developers] Version 1.3; The City of Oslo: Oslo, Norway, 2017. [Google Scholar]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume III—Water Quality; US Environmental Protection Agency: Cincinnati, OH, USA, 2016.
- Muthanna, T.M.; Viklander, M.; Blecken, G.; Thorolfsson, S.T. Snowmelt pollutant removal in bioretention areas. Water Res. 2007, 41, 4061–4072. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and Verification of SWMM for Low Impact Development. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
Location | Station ID | Latitude | Longitude | m.a.s.l. | Data Available From | %Missing Data |
---|---|---|---|---|---|---|
Bergen | 50539 | 60.4 | 5.3 | 12 | 2003-06-18 | 13.2 |
Oslo | 18701 | 59.9 | 10.7 | 94 | 1969-04-16 | 31.3 |
Trondheim | 68230 | 63.4 | 10.4 | 127 | 1986-12-11 | 9.7 |
Measure | Long-Term Performance | Event-Based Performance |
---|---|---|
Bio retention cells | Water balance model 1 Infiltration to native soil Filtration for pollutant removal Evapotranspiration | RECARGA Peak reduction Peak delay Infiltration to native soil Filtration for pollutant removal |
Extensive green roofs | Water balance model 1 Evapotranspiration Runoff Drought considerations | SWMM Green roof module Peak reduction Peak delay |
Detention basins | No investigation relevant | Rain envelope method Volumes needed Dimensional rain duration |
Combined measures | No investigation | Comparison of: (1) Detention basin alone (2) Green roof and detention basin (3) Bioretention cell and detention basin (4) Green roof and bioretention cell and detention basin. Detention basin volumes needed |
Location | Value | CPOT | 0.950p | 0.990p | 0.995p |
---|---|---|---|---|---|
Bergen | Threshold, μ | 42.904 | 35.680 | 54.136 | 64.140 |
Scale, σ | 13.338 | 13.117 | 15.227 | 12.427 | |
Shape, ξ | 0.044 | 0.044 | 0.044 | 0.044 | |
Chi-sq. p-value | 0.405 | 0.13 | 0.304 | 0.112 | |
% sub-daily GPD fits with p > 0.05 | 67 | 67 | 67 | 78 | |
Oslo | Threshold, μ | 21.413 | 18.400 | 31.400 | 35.400 |
Scale, σ | 8.469 | 8.370 | 6.811 | 8.738 | |
Shape, ξ | 0.044 | 0.044 | 0.044 | 0.044 | |
Chi-sq. p-value | 0.095 | 0.044 | 0.192 | 0.183 | |
% sub-daily GPD fits with p > 0.05 | 33 | 11 | 33 | 44 | |
Trondheim | Threshold, μ | 19.422 | 15.600 | 27.600 | 36.686 |
Scale, σ | 9.672 | 8.636 | 10.636 | 8.056 | |
Shape, ξ | 0.044 | 0.044 | 0.044 | 0.044 | |
Chi-sq. p-value | 0.120 | 0.035 | 0.163 | 0.570 | |
% sub-daily GPD fits with p > 0.05 | 44 | 11 | 44 | 56 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristvik, E.; Johannessen, B.G.; Muthanna, T.M. Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures. Sustainability 2019, 11, 1231. https://doi.org/10.3390/su11051231
Kristvik E, Johannessen BG, Muthanna TM. Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures. Sustainability. 2019; 11(5):1231. https://doi.org/10.3390/su11051231
Chicago/Turabian StyleKristvik, Erle, Birgitte Gisvold Johannessen, and Tone Merete Muthanna. 2019. "Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures" Sustainability 11, no. 5: 1231. https://doi.org/10.3390/su11051231
APA StyleKristvik, E., Johannessen, B. G., & Muthanna, T. M. (2019). Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater Measures. Sustainability, 11(5), 1231. https://doi.org/10.3390/su11051231