Effects of Organic Wastes on Soil Organic Carbon and Surface Charge Properties in Primary Saline-alkali Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. SOC Density Fractionation
2.4. Determination and Calculation of Surface Charge Properties
2.4.1. Determination of Ca2+ and Na+
2.4.2. Calculation of Surface Charge Properties of Soil
- (1)
- surface potential φ0
- (2)
- (3)
- (4)
- specific surface area S:
- (5)
2.5. Data Analysis and Processing
3. Results
3.1. SOC Density Fractionation
3.2. Soil Surface Charge Properties
3.3. Correlation and Redundant Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Seki, K.; Miyazaki, T.; Ishihama, Y. The causes of soil alkalinization in the Songnen plain of Northeast China. Paddy Water Environ. 2009, 7, 259–270. [Google Scholar] [CrossRef]
- Shang, Z.; Gao, Q.; Dong, M. Impacts of grazing on the alkalinized–salinized meadow steppe ecosystem in the Songnen plain, China—A simulation study. Plant Soil. 2003, 249, 237–251. [Google Scholar] [CrossRef]
- Kang, Y.H.; Liu, S.H.; Wan, S.Q.; Wang, R.S. Assessment of soil enzyme activities of saline–sodic soil under drip irrigation in the songnen plain. Paddy Water Environ. 2013, 11, 87–95. [Google Scholar] [CrossRef]
- Li, P.; Wang, W.J. Utilization status and prospect of agricultural wastes in China. Tianjin Agric. Sci. 2009, 15, 46–49. [Google Scholar]
- Dai, Y.J.; Sun, Q.Y.; Wang, W.S.; Lu, L.; Liu, M.; Li, J.J.; Yang, S.S.; Sun, Y.; Zhang, K.X.; Xu, J.Y.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. 2018, 211, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Pardo, G.; Moral, R.; del Prado, A. SIMSWASTE-AD—A modelling framework for the environmental assessment of agricultural waste management strategies: Anaerobic digestion. Sci Total Environ. 2017, 574, 806–817. [Google Scholar] [CrossRef]
- Wang, W.; Akhtar, K.; Ren, G.; Yang, G.; Feng, Y.; Yuan, L. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci Total Environ. 2019, 652, 471–482. [Google Scholar] [CrossRef]
- Caricasole, P.; Provenzano, M.R.; Hatcher, P.G.; Senesi, N. Evolution of organic matter during composting of different organic wastes assessed by CPMAS 13 CNMR spectroscopy. Waste Manage. 2011, 31, 411–415. [Google Scholar] [CrossRef]
- Wu, Y.P.; Li, Y.F.; Zhang, Y.; Bi, Y.M.; Sun, Z.J. Responses of Saline Soil Properties and Cotton Growth to Different Organic Amendments. Pedosphere 2018, 28, 521–529. [Google Scholar] [CrossRef]
- Cai, P.; Huang, Q.; Zhu, J.; Jiang, D.; Zhou, X.; Rong, X.; Liang, W. Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloid Surf. B. 2007, 54, 53–59. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, J.; Qiao, X.; Cai, P.; Rong, X.; Liang, W.; Chen, L. Conformation, activity and proteolytic stability of acid phosphatase on clay minerals and soil colloids from an alfisol. Colloid Surf. B. 2009, 74, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Pan, G.; Li, L.; Quan, G.; Ding, C.; Luo, A. Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J. Colloid Interface Sci. 2010, 348, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xu, R.K.; Zhao, A.Z. Comparison of the surface chemical properties of four soils derived from quaternary red earth as related to soil evolution. Catena 2010, 80, 154–161. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, A.; Ji, G. Effect of low-molecular-weight organic anions on surface charge of variable charge soils. J. Colloid Interface Sci. 2003, 264, 322–326. [Google Scholar] [CrossRef]
- Bolan, N.S.; Naidu, R.; Syers, J.K.; Tillman, R.W. Surface charge and solute interactions in soils. Adv. Agron. 1999, 67, 87–140. [Google Scholar]
- Jiang, J.; Yuan, M.; Xu, R.; Bish, D.L. Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws. Soil Tillage Res. 2015, 146, 139–147. [Google Scholar] [CrossRef]
- Ma, R.T.; Hu, F.N.; Liu, Y.F.; Xu, C.Y.; Yang, Z.H.; Wang, Z.L.; Zhao, S.W. Evolution characteristics of soil surface electrochemical properties during vegetation restoration in the Loess Plateau. Acta Pedol. Sin. 2019, 1–12. [Google Scholar]
- Li, H.; Wei, S.; Qing, C.; Yang, J. Discussion on the position of the shear plane. J. Colloid Interface Sci. 2003, 258, 40–44. [Google Scholar] [CrossRef]
- Li, H.; Qing, C.L.; Wei, S.Q.; Jiang, X.J. An approach to the method for determination of surface potential on solid/liquid interface: Theory. J. Colloid Interface Sci. 2004, 275, 172–176. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Li, R.; Tian, R.; Xu, C. Combined determination of surface properties of nano-colloidal particles through ion selective electrodes with potentiometer. Analyst 2013, 138, 1122–1129. [Google Scholar] [CrossRef]
- Htun, Y.M.; Tong, Y.; Gao, P.; Ju, X. Coupled effects of straw and nitrogen management on N2O and CH4, emissions of rainfed agriculture in Northwest China. Atmos. Environ. 2017, 157, 156–166. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr Cycl Agroecosys. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Zhao, T.C.; Wang, M.Y.; Hu, S.J.; Zhang, X.D.; Ouyang, Z.; Zhang, G.L.; Huang, B.B.; Zhao, B.; Wu, J.S.; Xie, D.T.; et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Liang, W.; Xu, M.; He, X.; Wang, Y.; Zhao, K. Straw coverage alleviates seasonal variability of the topsoil microbial biomass and activity. Catena 2011, 86, 117–120. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Timsina, J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv. Agron. 2005, 85, 269–407. [Google Scholar]
- Grandy, A.S.; Neff, J.C. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 2008, 404, 297–307. [Google Scholar] [CrossRef]
- Schrumpf, M.; Kaiser, K.; Guggenberger, G.; Persson, T.; Kögel-Knabner, I.; Schulze, E.D. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 2013, 10, 1675–1691. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.F.; Cai, Z.C. Equilibrium of organic matter in heavy fraction for three long-term experimental field soils in China. Pedosphere 2006, 16, 177–184. [Google Scholar] [CrossRef]
- Li, H.B.; Han, X.Z.; Wang, F.; Qiao, Y.F. The distribution of carbon and nitrogen in the black soil density group under different land use. Acta Pedol. Sin. 2008, 1, 112–119. [Google Scholar]
- Bao, S.D. Agriculture Soil Chemical Analysis, 3rd ed.; Science Press: Beijing, China, 2010. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil. Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.; Skjemstad, J.; Clarke, P. Study of free and occluded particulate organic matter in soils by solid state 13 c cp/mas NMR spectroscopy and scanning electron microscopy. Soil Res. 1994, 32, 285–309. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Liu, X.; Li, R.; Zhu, H.; Wu, L. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment. Soil Sci. Soc. Am. J. 2011, 75, 2128. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J. Effects of maize stover and its biochar on soil CO2, emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Cui, Y.F.; Meng, J.; Wang, Q.X.; Zhang, W.M.; Cheng, X.Y.; Chen, W.F. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of north China. J. Integr. Agric. 2017, 16, 1064–1074. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Sharaf, A.; Sun, J.; Qu, X. Effects of organic wastes on structural characterizations of fulvic acid in semiarid soil under plastic mulched drip irrigation. Chemosphere 2019, 234, 830–838. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.L.; Xu, H.; Han, Y.; Cai, Z.C.; Yagi, K. Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Soil Res. 2007, 45, 359–367. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Fang, X.; Shi, H. Biochar input to reduce trace greenhouse gas emission in paddy field. Trans. Chin. Soc. Agric. Eng. 2014, 112–114. [Google Scholar]
- Liang, B.; Lehmann, J.; Sohi, S.P.; Thies, J.E.; O’Neill, B.; Trujillo, L.; Gaunt, J.; Solomon, D.; Grossman, J.; Neves, E.G.; et al. Black carbon affects the cycling of non-black carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.K.; Han, B.; Ouyang, Z.Y.; Zheng, H. Straw return to rice paddy: Soil carbon sequestration and increased methane emission. J. Appl. Ecol. 2010, 21, 99–108. [Google Scholar]
- Nelissen, V.; Rütting, T.; Huygens, D.; Staelens, J.; Ruysschaert, G.; Boeckx, P. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol. Biochem. 2012, 55, 20–27. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Xiong, Z.; Liu, P.; Pan, G. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol. Fertil. Soils. 2011, 47, 887–896. [Google Scholar] [CrossRef]
- Watanabe, A.; Yoshida, M.; Kimura, M. Contribution of rice straw carbon to ch4 emission from rice paddies using 13 C-enriched rice straw. J. Geophys. Res. Atmos. 1998, 103, 8237–8242. [Google Scholar] [CrossRef]
- Wu, M.; Pang, J.; Lu, F.; Zhang, X.; Che, L.; Xu, F. Application of new expansion pretreatment method on agricultural waste. part i: Influence of pretreatment on the properties of lignin. Ind. Crops Prod. 2013, 50, 887–895. [Google Scholar] [CrossRef]
- Jia, W.; Qin, W.; Zhang, Q.; Wang, X.; Ma, Y.; Chen, Q. Evaluation of crop residues and manure production and their geographical distribution in China. J. Clean. Prod. 2018, 188, 954–965. [Google Scholar] [CrossRef]
- Chen, S.X.; Yong, Q.; Xu, Y.; Zhu, J.J.; Yu, S. Effect of steam-explosion pretreatment on chemical components and cellulosic structure of corn stalk. Chem. Ind. Forest Prod. 2009, 29, 33–38. [Google Scholar]
- Rovira, P.; Ramón, V. Physical protection and biochemical quality of organic matter in Mediterranean calcareous forest soils: A density fractionation approach. Soil Biol. Biochem. 2003, 35, 245–261. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Yu, X.; Zhang, W. Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Plant Soil. 2015, 397, 189–200. [Google Scholar] [CrossRef]
- Chen, R.; Shen, J. Reconstructing Mid- to Late- Holocene East Asian Monsoon Variability in the Jingpo Lake, Northeastern China. In Earth Surface Processes and Environmental Changes in East Asia; Kashiwaya, K., Shen, J., Kim, J., Eds.; Springer: Tokyo, Japan, 2015; pp. 95–127. [Google Scholar]
- Guan, S.; Liu, S.J.; Liu, R.Y.; Zhang, J.J.; Ren, J.; Cai, H.G.; Li, X.X. Soil organic carbon associated with aggregate-size and density fractions in a Mollisol amended with charred and uncharred maize straw. J. Integr. Agric. 2019, 1496–1507. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.G.; Qu, X.J. Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation. J. Arid Land. 2017, 10, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Lin, Z.W.; Penttinen, P.; Li, Y.F.; Li, Y.C.; Luo, Y. Effects of conversion from a natural evergreen broadleaf forest to a moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. For. Ecol. Manage. 2018, 422, 161–171. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.C.; Chi, C.M. Parameters and characteristics of alkalization of sodic soil in Da’an City. Ecol. Rural Environ. 2006, 22, 20–23. [Google Scholar]
- Badia, D. Straw management effects on organic matter mineralization and salinity in semiarid agricultural soils. Arid Soil Res. Rehab. 2000, 14, 193–203. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, A.Z.; Yang, C.; Zhu, D.W.; Xu, R.K. Effects of Cultivation Periods on Surface Chemical Properties of Paddy Soils Derived from Yellow Brown Soil. Soils 2011, 6, 22. [Google Scholar]
- Jiang, J.; Xu, R.K.; Zhao, A.Z. Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China. Catena 2011, 87, 334–340. [Google Scholar] [CrossRef]
- Ding, W.Q.; Li, Q.; Li, H. Effect of surface charge properties on ion diffusion in soil colloid interface. Acta Pedol. Sin. 2010, 47, 896–904. [Google Scholar]
- Sun, L.; Xue, Y.; Peng, C.; Xu, C.; Shi, J. Does sulfur fertilizer influence Cu migration and transformation in colloids of soil pore water from the rice (Oryza sativa l.) rhizosphere? Environ. Pollut. 2018, 243, 1119–1125. [Google Scholar] [CrossRef]
- Zhang, J.N.; Xu, M.; Wu, F.Q. Assessment indicators of soil quality in Loess gullied-hilly region of China. Nat. Env. Poll. Tech. 2015, 14, 313–318. [Google Scholar]
- Li, J.; Wang, D.; Fan, W.; He, R.; Yao, Y.; Sun, L. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil. Appl. Soil Ecol. 2017, 125, 12–17. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.; Li, J.; Hu, J. Comparative effects of different maize straw returning modes on soil humus composition and humic acid structural characteristics in northeast China. Chem. Ecol. 2018, 34, 355–370. [Google Scholar] [CrossRef]
- Tejada, M.; Hernandez, M.T.; Garcia, C. Application of two organic amendments on soil restoration: Effects on the soil biological properties. J. Environ. Qual. 2006, 35, 1010. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Chang, E.; Lai, P.; Dong, Y.; Xu, R.K.; Fang, D.M.; Jiang, J. Evolution of soil surface charge in a chronosequence of paddy soil derived from Alfisol. Soil Tillage Res. 2019, 192, 144–150. [Google Scholar] [CrossRef]
- Wu, J.M.; Liu, Y.H.; Li, X.Y. Surface charge characteristics of soil colloids in China. Acta Pedol. Sin. 2002, 39, 177–183. [Google Scholar]
- Huang, L.M.; Zhang, X.H.; Shao, M.A.; Rossiter, D.; Zhang, G.L. Pedogenesis significantly decreases the stability of water-dispersible soil colloids in a humid tropical region. Geoderma 2016, 274, 45–53. [Google Scholar] [CrossRef]
- Xia, B.; Qiu, H.; Knorr, K.H.; Blodau, C.; Qiu, R. Occurrence and fate of colloids and colloid-associated metals in a mining-impacted agricultural soil upon prolonged flooding. J. Hazard. Mater. 2018, 348, 56–66. [Google Scholar] [CrossRef]
- Ding, W.Q.; He, J.H.; Liu, X.M. Effect of organic matter on aggregation of soil colloidal particles in water bodies of Three Gorge Reservoir Region. J. Soil Water Conserv. 2017, 31, 166–171. (In Chinese) [Google Scholar]
Organic Matters g·kg−1. | Available Phosphorous mg·kg−1 | Available Potassium mg·kg−1 | Available Nitrogen mg·kg−1 | Total Salt g·kg−1 | EC ms·cm−1 | CEC cmol·kg−1 | Exchangeable Sodium Percent cmol·kg−1 | pH | Clay % | Silt % | Sand % |
---|---|---|---|---|---|---|---|---|---|---|---|
2.91 ± 0.03 | 20.61 ± 0.04 | 143.33 ± 2.32 | 11.28 ± 0.02 | 3.39 ± 0.03 | 0.52 ± 0.02 | 3.82 ± 0.12 | 2.29 ± 0.05 | 9.94 ± 0.05 | 40.5% | 18.3% | 41.2% |
Organic Wastes | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Total Phosphorus (g kg−1) | Total Potassium (g kg−1) | C:N Ratio | pH |
---|---|---|---|---|---|---|
FG | 422.4 ± 2.09 | 16.75 ± 0.11 | 1.02 ± 0.02 | 4.05 ± 0.05 | 14.63 | 6.14 ± 0.05 |
CS | 493.4 ± 2.16 | 8.33 ± 0.09 | 1.12 ± 0.04 | 12.3 ± 0.08 | 34.36 | 6.42 ± 0.11 |
SM | 506.2 ± 1.98 | 9.82 ± 0.12 | 3.6 ± 0.06 | 8.32 ± 0.04 | 29.9 | 7.27 ± 0.14 |
GS | 493.4 ± 2.16 | 8.33 ± 0.07 | 1.12 ± 0.02 | 12.3 ± 0.12 | 34.36 | 6.42 ± 0.08 |
Treatments | SOC | Fr-LFOC | Oc-LFOC | HFOC |
---|---|---|---|---|
CK | 3.051 ± 0.095 e | 0.067 ± 0.001 d | 0.086 ± 0.016 e | 2.896 ± 0.002 e |
FG | 3.678 ± 0.128 d | 0.409 ± 0.01 c | 0.175 ± 0.002 d | 3.094 ± 0.007 d |
CS | 3.809 ± 0.068 c | 0.414 ± 0.01 c | 0.118 ± 0.009 c | 3.274 ± 0.003 c |
SM | 6.174 ± 0.089 b | 0.751 ± 0.021 b | 0.257 ± 0.013 b | 5.168 ± 0.005 b |
GS | 7.679 ± 0.154 a | 0.816 ± 0.006 a | 0.319 ± 0.003 a | 6.534 ± 0.017 a |
Treatments | a0Ca | a0Na | c0Ca | c0Na |
---|---|---|---|---|
mmol·L−1 | ||||
CK | 0.68 ± 0.02 e | 16.18 ± 0.42 a | 0.83 ± 0.04 e | 16.53 ± 0.39 a |
FG | 1.25 ± 0.04 c | 13.01 ± 0.17 c | 1.73 ± 0.05 c | 13.97 ± 0.21 d |
CS | 1.45 ± 0.03 a | 13.83 ± 0.18 b | 1.85 ± 0.05 b | 14.71 ± 0.27 b |
SM | 1.18 ± 0.02 d | 13.14 ± 0.14 c | 1.67 ± 0.08 d | 14.23 ± 0.22 c |
GS | 1.34 ± 0.06 b | 12.36 ± 0.08 d | 1.96 ± 0.11 a | 13.47 ± 0.38 e |
Treatments | φ0/mv | σ0/c·m−2 | E0 108/v·m−1 | S/m2·g−1 | SCN/cmol·kg−1 |
---|---|---|---|---|---|
CK | −95.99 ± 2.47 d | 0.24 ± 0.03 a | 3.43 ± 0.47 a | 39.85 ± 2.29 e | 10.04 ± 1.98 a |
FG | −78.15 ± 2.07 c | 0.42 ± 0.04 b | 6.01 ± 0.32 c | 47.02 ± 3.02 c | 20.75 ± 1.34 c |
CS | −73.49 ± 2.37 a | 0.36 ± 0.02 c | 5.05 ± 0.23 e | 48.70 ± 2.35 c | 18.03 ± 1.15 d |
SM | −77.15 ± 2.55 b | 0.39 ± 0.07 c | 5.54 ± 0.11 d | 51.1 ± 2.17 b | 20.79 ± 1.06 c |
GS | −77.88 ± 2.92 b | 0.43 ± 0.01 b | 6.12 ± 0. 24 b | 62.86 ± 2.52 a | 28.27 ± 1.85 b |
SOC | Fr-LFOC | Oc-LFOC | HFOC | |
---|---|---|---|---|
SOC | 1 | |||
Fr-LFOC | 0.859 * | 1 | ||
Oc-LFOC | 0.932 ** | 0.889 * | 1 | |
HFOC | 0.994 ** | 0.801 * | 0.901 * | 1 |
SOC | Fr-LFOC | Oc-LFOC | HFOC | |
---|---|---|---|---|
φ0 | 0.429 | 0.711 ** | 0.486 | 0.365 |
σ0 | 0.655 ** | 0.832 ** | 0.793 ** | 0.601 * |
E0 | 0.632 * | 0.823 ** | 0.773 ** | 0.575 * |
S | 0.927 ** | 0.901 ** | 0.91 ** | 0.914 ** |
SCN | 0.841 ** | 0.909 ** | 0.908 ** | 0.807 ** |
Index | Interpretation Rate % | F-value | p-value |
---|---|---|---|
SOC | 71.2 | 24.704 | 0.004 |
Fr-LFOC | 16.4 | 19.594 | 0.002 |
Oc-LFOC | 11.1 | 1.7 | 0.199 |
HFOC | 0.1 | 0.2 | 0.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wu, J.; Opoku-Kwanowaa, Y. Effects of Organic Wastes on Soil Organic Carbon and Surface Charge Properties in Primary Saline-alkali Soil. Sustainability 2019, 11, 7088. https://doi.org/10.3390/su11247088
Chen X, Wu J, Opoku-Kwanowaa Y. Effects of Organic Wastes on Soil Organic Carbon and Surface Charge Properties in Primary Saline-alkali Soil. Sustainability. 2019; 11(24):7088. https://doi.org/10.3390/su11247088
Chicago/Turabian StyleChen, Xiaodong, Jinggui Wu, and Yaa Opoku-Kwanowaa. 2019. "Effects of Organic Wastes on Soil Organic Carbon and Surface Charge Properties in Primary Saline-alkali Soil" Sustainability 11, no. 24: 7088. https://doi.org/10.3390/su11247088
APA StyleChen, X., Wu, J., & Opoku-Kwanowaa, Y. (2019). Effects of Organic Wastes on Soil Organic Carbon and Surface Charge Properties in Primary Saline-alkali Soil. Sustainability, 11(24), 7088. https://doi.org/10.3390/su11247088