Measuring Urban Spatial Activity Structures: A Comparative Analysis
Abstract
:1. Introduction
- What is the best approach to estimate expected HAI in the city?
- How the factual HAI in the city can be calculated using big data from Baidu? and
- Are expected HAI and factual HAI highly correlated with each other? Or in other words, to what extent does the expected HAI (a reflection of the city’s spatial configuration/built environment) match the factual HAI (a measurement of people’s spatial movements in Hangzhou)?
2. Literature Review
2.1. Conceptual Frameworks
2.2. Expected HAI
2.3. Factual HAI
3. Methods
3.1. Study Area
3.2. Data Collection and Data Analysis
3.2.1. Determination of HAI Indicators and Associated Weights
3.2.2. Expected HAI (Inferring HAI based on Built Environmental Metrics)
Residential Density
Road Connectivity
Land-Use Mix Degree
3.2.3. Factual HAI (HAI based onBTV)
4. Results
4.1. Weights Determined Using the Delphi Method
4.2. Expected HAI Estimated through the Built Environment Elements
4.3. Factual HAI Estimated based on Baidu Thermal Value
4.4. Comparing Expected HAI and Factual HAI
5. Discussion
6. Conclusions
6.1. Research Limitations
6.2. Future Research Needs
Author Contributions
Funding
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The national human activity pattern survey (nhaps): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2000, 11, 231–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Discovering urban spatial-temporal structure from human activity patterns. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12 August 2012; pp. 95–102. [Google Scholar]
- Hasan, S.; Zhan, X.; Ukkusuri, S.V. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, UrbComp@KDD 2013, Chicago, IL, USA, 11 August 2013. [Google Scholar]
- Wu, K.Y.; Hao, Z. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing hangzhou metropolitan area, eastern china (1978–2008). Appl. Geogr. 2012, 34, 137–145. [Google Scholar] [CrossRef]
- Wu, K.Y.; Ye, X.Y.; Qi, Z.F.; Hao, Z. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing hangzhou metropolitan area, China. Cities 2013, 31, 276–284. [Google Scholar] [CrossRef]
- Wade, R.H. Is globalization reducing poverty and inequality? Int. J. Health Serv. 2004, 32, 567–589. [Google Scholar]
- Li, S.; Zhao, P. Restrained mobility in a high-accessible and migrant-rich area in downtown beijing. Eur. Transp. Res. Rev. 2018, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Page, J.; Zhang, L.; Chen, S.; Cong, C.; Destouni, G.; Kalantari, Z.; Deal, B. Using comparative socio-ecological modeling to support climate action planning (cap). J. Clean. Prod. 2019, 232, 30–42. [Google Scholar] [CrossRef]
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 2016, 30, 334–350. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Stenger, H. Survey Sampling: Theory and Methods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ewing, R.; Schmid, T.; Killingsworth, R.; Zlot, A.; Raudenbush, S. Relationship between urban sprawl and physical activity, obesity, and morbidity. Am. J. Health Promot. AJHP 2003, 18, 47–57. [Google Scholar] [CrossRef]
- Miller, R.B. Interactions and collaboration in global change across the social and natural sciences. AMBIO 1994, 23, 19–24. [Google Scholar]
- Ii, B.L.T.; Skole, D.L.; Sanderson, S.; Fischer, G.; Fresco, L.O.; Leemans, R. Land-use and land-cover change, science/research plan. Glob. Chang. Rep. 1995, 43, 669–679. [Google Scholar]
- Yong, X.; Xiaoren, X.; Qing, T. Human activity intensity of land surface: Concept, methods and application in china. J. Geogr. Sci. 2016, 26, 1349–1361. [Google Scholar]
- Chen, B.; Adimo, O.A.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of hangzhou flower garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [Google Scholar] [CrossRef]
- Cai, J.; Bo, H.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Dunkel, A. Visualizing the perceived environment using crowdsourced photo geodata. Landsc. Urban Plan. 2015, 142, 173–186. [Google Scholar] [CrossRef]
- Friasmartinez, V.; Soto, V.; Hohwald, H.; Friasmartinez, E. Characterizing urban landscapes using geolocated tweets. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, Amsterdam, The Netherlands, 3–5 September 2012; pp. 239–248. [Google Scholar]
- Jin, X.; Long, Y.; Sun, W.; Yang, X.; Tang, J. Evaluating cities’ vitality and identifying ghost cities in china with emerging geographical data. Cities 2017, 63, 98–109. [Google Scholar] [CrossRef]
- Leng, S. Almost One-Third of Chinese Cities Are Shrinking, but Urban Planners Told to Keep Building. Available online: https://sg.news.yahoo.com/almost-one-third-chinese-cities-124058122.html (accessed on 18 March 2019).
- Lew, A.; Mckercher, B. Modeling tourist movements: A local destination analysis. Ann. Tour. Res. 2006, 33, 403–423. [Google Scholar] [CrossRef]
- Ye, H.; Dennis, W. Restructuring for growth in urban china: Transitional institutions, urban development, and spatial transformation. Habitat Int. 2012, 36, 396–405. [Google Scholar]
- López, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe: A case in morelia city, mexico. Landsc. Urban Plan. 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Waddell, P. Urbansim: Modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 2002, 68, 297–314. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X. Applying sleuth for simulating urban expansion of hangzhou. In Proceedings of the Second International Conference on Earth Observation for Global Changes, Chengdu, China, 9 October 2009. [Google Scholar]
- Hillier, B. The art of place and the science of space. World Archit. 2005, 185, 96–102. [Google Scholar]
- Ellegård, K.; Svedin, U. Torsten hägerstrand’s time-geography as the cradle of the activity approach in transport geography. J. Transp. Geogr. 2012, 23, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; He, X.; Li, Y.; Zhu, J.; Li, X. Human activity intensity and its spatial distribution pattern in upper reach of minjiang river. Chin. J. Ecol. 2007, 26, 539–543. [Google Scholar]
- Liu, S.; Liu, L.; Wu, X.; Hou, X.; Zhao, S.; Liu, G. Quantitative evaluation of human activity intensity on the regional ecological impact studies. Shengtai Xuebao/Acta Ecol. Sin. 2018, 38, 6797–6809. [Google Scholar]
- Xu, Z.; Zhuang, D.; Yang, L. Construction and application of regional quantitative model of human activity intensity. J. Geo-Inf. Sci. 2009, 11, 452–460. [Google Scholar] [CrossRef]
- Zheng, W.; Zou, J.; Tian, Y.; Deng, Y. Spatial simulation of human activity intensity based on rs and gis. Trop. Geogr. 2011, 31, 77–81. [Google Scholar]
- Mckercher, B.; Lau, G. Movement patterns of tourists within a destination. Tour. Geogr. 2008, 10, 355–374. [Google Scholar] [CrossRef]
- Jiang, S.; Ferreira, J.; Gonzalez, M.C. Activity-based human mobility patterns inferred from mobile phone data: A case study of singapore. IEEE Trans. Big Data 2017, 3, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.Q.; Li, G.; Law, R.; Zhang, Y. Tourist activity analysis by leveraging mobile social media data. J. Travel Res. 2018, 57, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Shoval, N.; McKercher, B.; Ng, E.; Birenboim, A. Hotel location and tourist activity in cities. Ann. Tour. Res. 2011, 38, 1594–1612. [Google Scholar] [CrossRef]
- Shoval, N.; Ahas, R. The use of tracking technologies in tourism research: The first decade. Tour. Geogr. 2016, 18, 587–606. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, Y.; Wei, Y.; Zhao, Z.; Pang, R.; Wang, S. Spatial-temporal pattern and dynamic mechanism of population flow of changchun city during chunyun period based on baidu migration data. Econ. Geogr. 2019, 39, 101–109. [Google Scholar]
- Huang, X.; Zhang, L.; Ding, Y. The baidu index: Uses in predicting tourism flows—A case study of the forbidden city. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- He, S.; Dang, H.; Zhang, M. Research on dynamic changes of urban square space in spatial and temporal based on baidu thermal diagram a case study on the wuyi square of changsha. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10–12 March 2017; pp. 517–522. [Google Scholar]
- Deng, J.; Selin, S. Application of the delphi method to ecotourism destination evaluations: A rejoinder to brian garrod. J. Ecotour. 2012, 11, 224–229. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Crane, R. Travel by Design: The Influence of Urban form on Travel; Oxford University Press on Demand: Oxford, UK, 2001. [Google Scholar]
- Handy, S.; Boarnet, M.; Ewing, R.; Killingsworth, R. How the built environment affects physical activity: Views from urban planning. Am. J. Prev. Med. 2002, 23, 64–73. [Google Scholar] [CrossRef]
- Katz, P.; Scully, V.J.; Bressi, T.W. The New Urbanism: Toward an Architecture of Community; McGraw-Hill: New York, NY, USA, 1994; Volume 10. [Google Scholar]
- Kang, C.; Ma, X.; Tong, D.; Yu, L. Intra-urban human mobility patterns: An urban morphology perspective. Phys. A Stat. Mech. Appl. 2012, 391, 1702–1717. [Google Scholar] [CrossRef]
- Buliung, R.N.; Kanaroglou, P.S. Urban form and household activity-travel behavior. Growth Chang. 2010, 37, 172–199. [Google Scholar] [CrossRef]
- Lund, H. Testing the claims of new urbanism: Local access, pedestrian travel, and neighboring behaviors. J. Am. Plan. Assoc. 2003, 69, 414–429. [Google Scholar] [CrossRef]
- Talen, E. Sense of community and neighbourhood form: An assessment of the social doctrine of new urbanism. Urban Stud. 1999, 36, 1361–1379. [Google Scholar] [CrossRef]
- Urbanism, C.F.T.N. Charter of the new urbanism. Bull. Sci. Technol. Soc. 2000, 20, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Willis, A.; Gjersoe, N.; Havard, C.; Kerridge, J.; Kukla, R. Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments. Environ. Plan. B Plan. Des. 2004, 31, 805–828. [Google Scholar] [CrossRef] [Green Version]
- Hoyt, H. The Structure and Growth of Residential Neighborhoods in American Cities; US Government Printing Office: Washington, DC, USA, 1939.
- McFadden, D. Modelling the Choice of Residential Location; Cowles Foundation Discussion Papers; Cowles Foundation, Yale University: New Haven, CT, USA, 1977; p. 673. [Google Scholar]
- Termote, M. Cities and housing: The Spatial Pattern of Urban Residential Land Use; Muth, R.F., Ed.; University of Chicago: Chicago, IL, USA, 1969; pp. 591–592. [Google Scholar]
- Talen, E. The social goals of new urbanism. Hous. Policy Debate 2002, 13, 165–188. [Google Scholar] [CrossRef]
- Lämmer, S.; Gehlsen, B.; Helbing, D. Scaling laws in the spatial structure of urban road networks. Phys. A Stat. Mech. Appl. 2006, 363, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, W.; Quddus, M.; Noland, R. Map-matching in complex urban road networks. Braz. J. Cartogr. 2003, 55, 1–14. [Google Scholar]
- Zhou, J.; Pei, H.; Wu, H. Early warning of human crowds based on query data from baidu maps: Analysis based on shanghai stampede. In Advances in Geographic Information Science; Springer: Berlin, Germany, 2018; pp. 19–41. [Google Scholar]
- Li, J.; Miaoyi, L.; Ying, D.A. Analysis of chinese multi-center city based on baidu thermogram. Shanghai Urban Plan. 2016, 3, 30–36. [Google Scholar]
- Karimi, K. A configurational approach to analytical urban design: ’Space Syntax’ methodology. Urban Des. Int. 2012, 17, 297–318. [Google Scholar] [CrossRef]
- He, B.; Liu, L.; Huang, W.C. Urban spatial development strategy of chongqing metropolitan area. City Plan. Rev. 2009, 33, 83–86. [Google Scholar]
- Li, J.; Li, M.; Long, Y.; Dang, A. China polycentric cities based on baidu heatmap. Shanghai Urban Plan. Rev. 2016, 30–36. [Google Scholar]
- Yang, T.; Pan, H.; Hewings, G.; Jin, Y. Understanding urban sub-centers with heterogeneity in agglomeration economies—Where do emerging commercial establishments locate? Cities 2019, 86, 25–36. [Google Scholar] [CrossRef]
- Kloosterman, R.C.; Lambregts, B. Clustering of economic activities in polycentric urban regions: The case of the randstad. Urban Stud. 2016, 38, 717–732. [Google Scholar] [CrossRef]
- Zeljic, A.S. Polycentric Cities: The Future of Sustainable Urban Growth. Available online: https://www.gensler.com/research-insight/blog/polycentric-cities-new-normal-manila-finance-centre (accessed on 25 October 2018).
- Levin, N.; Kark, S.; Crandall, D. Where have all the people gone? Enhancing global conservation using night lights and social media. Ecol. Appl. 2015, 25, 2153–2167. [Google Scholar] [CrossRef] [Green Version]
PD | RC | LUM | HAI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | Max | Min | Average | Max | Min | Average | |
I | 745 | 21 | 184 | 38.46 | 0.05 | 8.70 | 1.32 | 0.01 | 0.63 | 0.51 | 0.02 | 0.26 |
II | 316 | 7 | 91 | 26.25 | 0.02 | 6.90 | 1.41 | 0.00 | 0.60 | 0.45 | 0.01 | 0.20 |
III | 203 | 7 | 37 | 23.60 | 0.00 | 4.60 | 1.41 | 0.00 | 0.18 | 0.35 | 0.01 | 0.12 |
IV | 48 | 7 | 24 | 18.27 | 0.01 | 3.30 | 1.44 | 0.00 | 0.63 | 0.39 | 0.01 | 0.08 |
V | 46 | 8 | 23 | 11.00 | 0.02 | 2.70 | 1.30 | 0.04 | 0.53 | 0.25 | 0.01 | 0.04 |
HAI | I | II | III | IV | V | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | ||
0–0.06 | 9.27 | 12.24 | 40.92 | 21.89 | 98.92 | 45.12 | 115.04 | 66.48 | 44.38 | 85.00 | 308.53 |
0.06–0.14 | 10.37 | 13.69 | 32.06 | 17.15 | 54.61 | 24.91 | 29.99 | 17.33 | 5.11 | 9.79 | 132.14 |
0.14–0.23 | 14.03 | 18.52 | 48.45 | 25.91 | 42.30 | 19.30 | 16.69 | 9.65 | 2.19 | 4.19 | 123.67 |
0.23–0.34 | 20.28 | 26.77 | 46.57 | 24.91 | 19.07 | 8.70 | 7.32 | 4.23 | 0.45 | 0.86 | 93.69 |
0.34–0.55 | 21.80 | 28.78 | 18.97 | 10.14 | 4.34 | 1.98 | 4.00 | 2.31 | 0.08 | 0.16 | 49.19 |
Total | 75.76 | 100.00 | 186.96 | 100.00 | 219.24 | 100.00 | 173.05 | 100.00 | 52.21 | 100.00 | 707.22 |
HAI | I | II | III | IV | V | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Area | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | Area | Ratio | ||
832–939 | 33.01 | 43.58 | 119.44 | 63.89 | 187.94 | 85.73 | 160.50 | 92.71 | 50.12 | 95.86 | 551.01 |
939–1054 | 12.89 | 17.01 | 34.73 | 18.57 | 18.56 | 8.47 | 5.02 | 2.90 | 0.94 | 1.80 | 72.13 |
1054–1200 | 13.52 | 17.85 | 22.62 | 12.10 | 8.96 | 4.09 | 4.36 | 2.52 | 0.64 | 1.22 | 50.10 |
1200–1403 | 11.35 | 14.98 | 8.73 | 4.67 | 2.96 | 1.35 | 2.42 | 1.40 | 0.58 | 1.12 | 26.05 |
1403–1946 | 4.99 | 6.58 | 1.44 | 0.77 | 0.82 | 0.37 | 0.82 | 0.47 | 0.00 | 0.01 | 8.07 |
Total | 75.76 | 100.00 | 186.96 | 100.00 | 219.24 | 100.00 | 173.12 | 100.00 | 52.28 | 100.00 | 707.36 |
LUM | RC | PD | Factual HAI | |
---|---|---|---|---|
BTV | 0.461 * | 0.628 * | 0.565 * | 0.577 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Xu, H.; Wang, T.; Yue, W.; Deng, J.; Mao, L. Measuring Urban Spatial Activity Structures: A Comparative Analysis. Sustainability 2019, 11, 7085. https://doi.org/10.3390/su11247085
Xu L, Xu H, Wang T, Yue W, Deng J, Mao L. Measuring Urban Spatial Activity Structures: A Comparative Analysis. Sustainability. 2019; 11(24):7085. https://doi.org/10.3390/su11247085
Chicago/Turabian StyleXu, Lihua, Huifeng Xu, Tianyu Wang, Wenze Yue, Jinyang Deng, and Liwei Mao. 2019. "Measuring Urban Spatial Activity Structures: A Comparative Analysis" Sustainability 11, no. 24: 7085. https://doi.org/10.3390/su11247085
APA StyleXu, L., Xu, H., Wang, T., Yue, W., Deng, J., & Mao, L. (2019). Measuring Urban Spatial Activity Structures: A Comparative Analysis. Sustainability, 11(24), 7085. https://doi.org/10.3390/su11247085