Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan
Abstract
:1. Introduction
Rationale
2. Materials and Methods
2.1. Study Area
- Chitral, Dir Upper, Dir Lower, Shangla, and Swat: Geographically they are situated in the upstream northern mountainous part of the province.
- Charsadda, Nowshera, and Peshawar: Geographically they are in the downstream central plain part of the province.
- D. I. Khan: Geographically it is also situated downstream in the southern plain part of the province.
2.2. Construction of Flood Vulnerability Indices
2.2.1. Indicators Selection
Factors | Abbreviation-Indicators (Unit) | Data Source |
---|---|---|
Exposure | PD—Population density (persons/ Km2) | Calculated [48] |
FPA—Flood prone area (%) | Calculated [15] | |
AASL—Altitude Above Sea Level (m) | [25] | |
Susceptibility | WMN—Women gender (%) | Calculated [48] |
MMR—Maternal mortality rate (per population) | [49] | |
CMR—Child mortality rate (per 1000 live birth) | [49] | |
DPR—Dependency ratio (%) | [37] | |
LAIW—Lack of access to improved drinking water (%) | [37] | |
LAIS—Lack of access to improved sanitation (%) | [37] | |
UNE—Unemployment (%) | Calculated [50] | |
KH—Kacha houses (%) | [37] | |
AGL—Agricultural land (%) | [50] | |
Lack of Resilience | LR—Literacy rate (%) | [50] |
NH—Numbers of hospitals (per districts) | [50] | |
ASR—Length of asphalt roads (km/km2) | [51] | |
FC—Forest cover (%) | Calculated [50] | |
MMHI—Mean monthly household income (US$) | [37] | |
FMM—Flood management measures (number) | [52] |
2.2.2. Data Treatment
2.2.3. Data Rescaling
2.2.4. Weighting
2.2.5. Aggregation
2.2.6. Robustness Check
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
PD | FPA | AASL | WMN | CMR | MMR | DPR | LAIW | LAIS | KH | AGL | UNE | LR | ASR | FC | MMHI | FMM | NH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PD | 1.00 | −0.07 | −0.48 | −0.37 | 0.20 | 0.17 | −0.41 | −0.68 | −0.21 | −0.60 | 0.36 | −0.49 | 0.48 | 0.57 | −0.51 | 0.42 | 0.76 | 0.81 |
FPA | −0.07 | 1.00 | 0.14 | −0.40 | 0.48 | −0.39 | −0.32 | −0.32 | −0.21 | −0.52 | −0.55 | −0.16 | −0.46 | −0.08 | −0.33 | −0.32 | 0.24 | −0.30 |
AASL | −0.48 | 0.14 | 1.00 | 0.48 | −0.40 | 0.34 | 0.55 | 0.66 | −0.23 | 0.46 | 0.01 | 0.70 | −0.49 | −0.48 | 0.71 | −0.39 | −0.66 | −0.30 |
WMN | −0.37 | −0.40 | 0.48 | 1.00 | −0.76 | 0.34 | 0.95 | 0.55 | 0.01 | 0.59 | 0.44 | 0.39 | −0.21 | 0.17 | 0.91 | −0.04 | −0.37 | −0.27 |
CMR | 0.20 | 0.48 | −0.40 | −0.76 | 1.00 | −0.18 | −0.83 | −0.57 | −0.02 | −0.50 | −0.37 | −0.53 | 0.13 | −0.10 | −0.70 | 0.41 | 0.39 | 0.09 |
MMR | 0.17 | −0.39 | 0.34 | 0.34 | −0.18 | 1.00 | 0.39 | 0.41 | 0.36 | 0.23 | 0.28 | 0.17 | −0.20 | −0.23 | 0.40 | 0.54 | −0.08 | 0.56 |
DPR | −0.41 | −0.32 | 0.55 | 0.95 | −0.83 | 0.39 | 1.00 | 0.70 | 0.17 | 0.52 | 0.22 | 0.40 | −0.42 | 0.06 | 0.90 | −0.18 | −0.41 | −0.22 |
LAIW | −0.68 | −0.32 | 0.66 | 0.55 | −0.57 | 0.41 | 0.70 | 1.00 | 0.43 | 0.68 | −0.15 | 0.55 | −0.56 | −0.51 | 0.70 | −0.33 | −0.82 | −0.30 |
LAIS | −0.21 | −0.21 | −0.23 | 0.01 | −0.02 | 0.36 | 0.17 | 0.43 | 1.00 | 0.22 | −0.26 | −0.13 | −0.52 | −0.18 | −0.09 | 0.13 | −0.15 | 0.04 |
KH | −0.60 | −0.52 | 0.46 | 0.59 | −0.50 | 0.23 | 0.52 | 0.68 | 0.22 | 1.00 | 0.43 | 0.73 | −0.19 | −0.36 | 0.58 | −0.20 | −0.86 | −0.48 |
AGL | 0.36 | −0.55 | 0.01 | 0.44 | −0.37 | 0.28 | 0.22 | −0.15 | −0.26 | 0.43 | 1.00 | 0.31 | 0.43 | 0.35 | 0.23 | 0.27 | −0.01 | 0.19 |
UNE | −0.49 | −0.16 | 0.70 | 0.39 | −0.53 | 0.17 | 0.40 | 0.55 | −0.13 | 0.73 | 0.31 | 1.00 | −0.21 | −0.61 | 0.51 | −0.46 | −0.74 | −0.34 |
LR | 0.48 | −0.46 | −0.49 | −0.21 | 0.13 | −0.20 | −0.42 | −0.56 | −0.52 | −0.19 | 0.43 | −0.21 | 1.00 | 0.30 | −0.24 | 0.40 | 0.38 | 0.39 |
ASR | 0.57 | −0.08 | −0.48 | 0.17 | −0.10 | −0.23 | 0.06 | −0.51 | −0.18 | −0.36 | 0.35 | −0.61 | 0.30 | 1.00 | −0.15 | 0.16 | 0.59 | 0.18 |
FC | −0.51 | −0.33 | 0.71 | 0.91 | −0.70 | 0.40 | 0.90 | 0.70 | −0.09 | 0.58 | 0.23 | 0.51 | −0.24 | −0.15 | 1.00 | −0.09 | −0.53 | −0.26 |
MMHI | 0.42 | −0.32 | −0.39 | −0.04 | 0.41 | 0.54 | −0.18 | −0.33 | 0.13 | −0.20 | 0.27 | −0.46 | 0.40 | 0.16 | −0.09 | 1.00 | 0.50 | 0.58 |
FMM | 0.76 | 0.24 | −0.66 | −0.37 | 0.39 | −0.08 | −0.41 | −0.82 | −0.15 | −0.86 | −0.01 | −0.74 | 0.38 | 0.59 | −0.53 | 0.50 | 1.00 | 0.59 |
NH | 0.81 | −0.30 | −0.30 | −0.27 | 0.09 | 0.56 | −0.22 | −0.30 | 0.04 | −0.48 | 0.19 | −0.34 | 0.39 | 0.18 | −0.26 | 0.58 | 0.59 | 1.00 |
Districts | PD | FPA | DPR | MMR | LAIS | KH | AGL | LR | ASR | FC | MMHI | FMM |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Charsadda | 1622.69 | 48.98 | 99.88 | 30.00 | 21.97 | 75.00 | 92.20 | 44.00 | 0.41 | 0.00 | 1.25 | 5.00 |
Chitral | 30.13 | 20.83 | 103.00 | 128.00 | 2.25 | 91.60 | 84.70 | 55.00 | 0.10 | 42.97 | 1.25 | 0.00 |
D.I. Khan | 222.10 | 25.53 | 98.32 | 124.00 | 50.94 | 76.10 | 42.40 | 41.00 | 0.16 | 0.54 | 1.25 | 2.00 |
Dir Lower | 907.09 | 18.92 | 118.75 | 93.00 | 14.56 | 71.50 | 72.70 | 49.00 | 0.47 | 54.34 | 1.25 | 4.00 |
Dir Upper | 255.86 | 17.86 | 120.52 | 557.00 | 42.23 | 91.60 | 83.60 | 36.00 | 0.20 | 64.29 | 1.75 | 2.00 |
Nowshera | 868.73 | 57.14 | 90.84 | 74.00 | 15.45 | 57.70 | 51.20 | 50.00 | 0.30 | 5.12 | 1.75 | 6.00 |
Peshawar | 3396.24 | 26.09 | 94.22 | 375.00 | 16.81 | 51.60 | 80.10 | 56.00 | 0.33 | 0.08 | 1.75 | 8.00 |
Shangla | 477.81 | 67.86 | 106.52 | 226.00 | 18.62 | 71.70 | 49.20 | 30.00 | 0.18 | 32.31 | 1.00 | 1.00 |
Swat | 432.75 | 69.23 | 106.20 | 103.00 | 19.37 | 55.30 | 43.00 | 39.00 | 0.19 | 27.30 | 1.25 | 6.00 |
References
- Balica, S.F. Approaches of Understanding Developments of Vulnerability Indices for Natural Disasters. J. Environ. Eng. 2012, 11, 1–12. [Google Scholar] [CrossRef]
- Kron, W. Flood Risk—A Global Problem; ICHE: Hamburg, Germany, 2014; pp. 9–18. [Google Scholar]
- Nasiri, H.M.; Yusof, J.M.; Ali, T.M.A. An Overview to Flood Vulnerability Assessment Methods. Sustain. Water Res. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef]
- Ciurean, R.L.; Schröter, D.; Glade, T. Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In Approaches to Disaster Management: Examining the Implications of Hazards, Emergencies and Disasters; Tiefenbacher, J., Ed.; InTech: London, UK, 2013; pp. 3–32. [Google Scholar] [CrossRef]
- Fussel, H.M. Vulnerability: A Generally Applicable Conceptual Framework for Climatic Research. Glob. Environ. Chang. 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework; University of East Anglia, Tyndall Centre for Climate Change Research: Norwich, UK, 2003. [Google Scholar]
- Baptista, S.R. Design and use of Composite Indices in Assessment of Climate Change Vulnerability and Resilience; Tetra Tech ARD: California, CA, USA, 2014. [Google Scholar]
- Organization for Economic Co-operation and Development. Handbook on Constructing Composite Indicators: Methodology and User Guide; Organization for Economic Co-operation and Development: Paris, France, 2008. [Google Scholar]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Roder, G.; Sofia, G.; Wu, Z.; Tarolli, P. Assessment of Social Vulnerability to Floods in the Floodplain of Northern Italy. Weather Clim. Soc. 2017, 9, 717–737. [Google Scholar] [CrossRef]
- Damm, M. Mapping Social-Ecological Vulnerability to Flooding—A sub-national approach for Germany. Master’s Thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany, 2010. [Google Scholar]
- Hudrliková, L. Composite Indicators as a Useful Tool for International Comparison: The Europe 2020 Example. Prague Eco. Pap. 2013, 22, 459–473. [Google Scholar] [CrossRef]
- Etter, J.; Hidajat, R.; Müller, C.; Velte, B. Linkages for Effective Disaster Management in Khyber Pakhtunkhwa Province; GTZ: Islamabad, Pakistan, 2011. [Google Scholar]
- Rahman, A.-u.; Khan, A.N. Analysis of 2010-Flood Causes, Nature and Magnitude in the Khyber Pakhtunkhwa, Pakistan. Nat. Hazards 2013, 66, 887–904. [Google Scholar] [CrossRef]
- Monsoon Contingency Plan 2017. Available online: https://www.pdma.gov.pk/sites/default/files/MCP%202017.pdf (accessed on 6 June 2018).
- Environmental Protection Agency. Khyber Pakhtunkhwa Climate Change Policy; Environmental Protection Agency, Government of Khyber Pakhtunkhwa Forestry, Environment & Wildlife Department: Peshawar, Pakistan, 2016. [Google Scholar]
- Akhter, M.I.; Irfan, M.; Shahzad, N.; Ullah, R. Community Based Flood Risk Reduction: A Study of 2010 Floods in Pakistan. Am. J. Soc. Sci. Res. 2017, 3, 35–42. [Google Scholar]
- Qasim, S.; Khan, A.N.; Shrestha, R.P.; Qasim, M. Risk Perception of the People in the Flood Prone Khyber Pukhthunkhwa Province of Pakistan. Inter. J. Disaster Risk Red. 2015, 14, 373–378. [Google Scholar] [CrossRef]
- Aslam, M.K. Agricultural Development in Khyber Pakhtunkhwa: Prospects, Challenges and Policy Options. Pak. A J. Pak. Stud. 2015, 4, 49–68. [Google Scholar]
- Khan, A.N.; Khan, S.N.; Safi Ullah, A.M.; Qasim, S. Flood Vulnerability Assessment in Union Council Jahangira, District Nowshera, Pakistan. J. Sci. Tech. Univ. Peshawar 2016, 40, 23–32. [Google Scholar]
- Birkmann, J. Risk and Vulnerability Indicators at different Scales: Applicability, Usefulness and Policy Implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Ann. Am. Assoc. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Fekete, A. Assessment of Social Vulnerability for River-Floods. Ph.D. Thesis, United Nations University—Institute for Environment and Human Security, Bonn, Germany, 2010. [Google Scholar]
- Climate-Data.org. (n.d.). Available online: https://en.climate-data.org/ (accessed on 27 July 2018).
- Adger, W.N.; Brooks, N.; Bentham, G.; Agnew, M.; Eriksen, S. New Indicators of Vulnerability and Adaptive Capacity; Tyndall Centre for Climate Change Research Norwich: Norwich, UK, 2004. [Google Scholar]
- Birkmann, J.; Cardona, O.D.; Carreno, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Welle, T. Framing Vulnerability, Risk and Societal Responses: The MOVE Framework. Nat. Hazards 2013, 2, 193–211. [Google Scholar] [CrossRef]
- Kablan, M.K.; Dongo, K.; Coulibaly, M. Assessment of Social Vulnerability to Flood in Urban Côte d’Ivoire Using the MOVE Framework. Water 2017, 9, 292. [Google Scholar] [CrossRef]
- CORDIS. Methods for the Improvement of Vulnerability Assessment in Europe. Available online: https://cordis.europa.eu/project/rcn/88645/reporting/en (accessed on 2 August 2019).
- Balica, S.; Wright, N.G. Reducing the Complexity of the Flood Vulnerability Index. Env. Hazards 2010, 9, 321–339. [Google Scholar] [CrossRef]
- Holand, I.S.; Lujala, P.; Röd, J.K. Social Vulnerability Assessment for Norway: A Quantitative Approach. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2011, 65, 1–17. [Google Scholar] [CrossRef]
- Hiremath, D.; Shiyani, R.L. Analysis of Vulnerability Indices in Various Agro-Climatic Zones of Gujarat. Indian J. Agric. Econ. 2013, 68, 122–137. [Google Scholar]
- Messner, F.; Meyer, V. Flood Damage, Vulnerability and Risk Perception—Challenges for Flood Damage Research; UFZ–Umwelt Forschungs Zentrum: Leipzig, Germany, 2005. [Google Scholar]
- Villordon, M.B. Community-Based Flood Vulnerability Index for Urban Flooding: Understanding Social Vulnerabilities and Risks; Université Nice Sophia Antipolis: Nice, France, 2014. [Google Scholar]
- Dwyer, A.; Zoppou, C.; Mielsen, O.; Day, S.; Roberts, S. Quantifying Social Vulnerability: A methodology for Identifying Those at Risk to Natural Hazards; Geoscience Australia: Canberra, Australia, 2004. [Google Scholar]
- Goodman, A. In the Aftermath of Disasters: The Impact on Women’s Health. Crit. Care Obstet. Gynecol. 2016, 2, 1–5. [Google Scholar] [CrossRef]
- Food Insecurity in Pakistan 2009. Available online: https://documents.wfp.org/stellent/groups/public/documents/ena/wfp225636.pdf (accessed on 3 March 2019).
- McCluskey, J. Water Supply, Health and Vulnerability in Floods. Waterlines 2001, 19, 14–17. [Google Scholar] [CrossRef]
- See, K.L.; Nayan, N.; Rahaman, Z.A. Flood Disaster Water Supply: A Review of Issues and Challenges in Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 525–532. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A Place-based Model for Understanding Community Resilience to Natural Disasters. Glob. Env. Chang. 2008, 14, 598–606. [Google Scholar] [CrossRef]
- Kuhlicke, C.; Scolobig, A.; Tapsell, S.; Steinführer, A.; De Marchi, B. Contextualizing Social Vulnerability: Findings from Case Studies across Europe. Nat. Hazards 2011, 58, 789–810. [Google Scholar] [CrossRef]
- Muller, A.; Reiter, J.; Weiland, U. Assessment of Urban Vulnerability towards Floods using an Indicator-based Approach—A Case Study for Santiago de Chile. Nat. Hazards Earth Syst. Sci. 2011, 7, 2107–2123. [Google Scholar] [CrossRef]
- Rafiq, L.; Blaschke, T. Disaster risk and vulnerability in Pakistan at a district level. Geomat. Nat. Hazards Risk 2012, 3, 324–341. [Google Scholar] [CrossRef]
- Shah, A.; Khan, H.; Qazi, E. Damage Assessment of Flood Affected Mud Houses in Pakistan. J. Himal. Earth Sci. 2013, 46, 99–110. [Google Scholar]
- Jonkman, S.N.; Kelman, I. An Analysis of the Causes and Circumstances of Flood Disaster Deaths. Disasters 2005, 29, 75–97. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Maaskant, B.; Boyd, E.; Levitan, M.L. Loss of Life Caused by the Flooding of New Orleans After Hurricane Katrina: Analysis of the Relationship Between Flood Characteristics and Mortality. Risk Anal. 2009, 29, 676–698. [Google Scholar] [CrossRef]
- Zanetti, C.; Macia, J.; Liency, N.; Vennetier, M.; Mériaux, P.; Provansal, M. Roles of the Riparian Vegetation: The Antagonism between Flooding Risk and the Protection of Environments. FLOODrisk—3rd European Conference on Flood Risk Management. E3S Web Conf. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Pakistan Bureau of Statistics. Available online: http://www.pbs.gov.pk/sites/default/files//DISTRICT_WISE_CENSUS_RESULTS_CENSUS_2017.pdf (accessed on 27 April 2018).
- Districts Health Information System. ANNUAL REPORT 2017. Available online: http://www.dhiskp.gov.pk/reports/Annual%20Report%202017%20N.pdf (accessed on 19 December 2018).
- Developmental Statistics of Khyber-Pakhtunkhwa 2017. Available online: http://www.pndkp.gov.pk/wp-content/uploads/2017/07/DEVELOPMENT-STATISTICS-OF-KHYBER-PAKHTUNKHWA-2017.pdf (accessed on 27 March 2018).
- Khyber Pakhtunkhwa’s Bureau of Statistics. Socio-economic Indicators of Khyber-Pakhtunkhwa. Peshawar, Pakistan: Government of Khyber-Pakhtunkhwa. 2017. Available online: https://kpbos.gov.pk/allpublication/2 (accessed on 10 June 2018).
- Irrigation Department of Khyber Pakhtunkhwa. Contingency Plan for Monsoon Season. Peshawar 2017. Available online: https://www.pdma.gov.pk/sites/default/files/MCP%202017.pdf (accessed on 26 November 2019).
- Saisana, M.; Saltelli, A. Rankings and Ratings: Instructions for Use. Hague J. Rule Law 2011, 3, 247–268. [Google Scholar] [CrossRef]
- Merz, M.; Hiete, M.; Comes, T.; Schultmann, F. A composite indicator model to assess natural disaster risks in industry on a spatial level. J. Risk Res. 2013, 16, 1077–1099. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Hölbling, D.; Kienberger, S.; Vanhuysse, S.; Zeil, P. Spatial Assessment of Social Vulnerability in the Context of Landmines and Explosive Remnants of War in Battambang Province, Cambodia. Int. J. Disaster Risk Red. 2016, 15, 148–161. [Google Scholar] [CrossRef]
- Iyengar, N.S.; Sudarshan, P. Method of Classifying Regions from Multivariate Data. Eco. Pol. Wkly. 1982, 17, 2048–2052. [Google Scholar]
- Chakraborty, A.; Joshi, P.K. Mapping disaster vulnerability in India using analytical hierarchy process. Geomat. Nat. Hazards Risk 2014, 7, 308–325. [Google Scholar] [CrossRef]
- Kissi, A.E.; Abbey, G.A.; Agboka, A.; Egbendewe, A. Quantitative Assessment of Vulnerability to Flood Hazards in Downstream Area of Mono Basin, South-Eastern Togo: Yoto District. J. Geogr. Inf. Syst. 2015, 7, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Nelitz, M.; Boardley, S.; Smith, R. Tools for Climate Change Vulnerability Assessments for Watersheds; Canadian Council of Ministers of the Environment: Vancouver, BC, Canada, 2013. [Google Scholar]
- Talukder, B.; Hipel, K.W.; vanLoon, G.W. Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques. Resources 2017, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Water and Waste Digest. Handling Zeros in Geometric Mean Calculation 2001. Available online: https://www.wwdmag.com/channel/casestudies/handling-zeros-geometric-mean-calculation (accessed on 6 September 2018).
- Lee, J.; Choi, H.I. Comparison of Flood Vulnerability Assessments to Climate Change by Construction Frameworks for a Composite Indicator. Sustainability 2018, 10, 768. [Google Scholar] [CrossRef] [Green Version]
- The JAMOVI project. 2019. Computer Software. Available online: https://www.jamovi.org/about.html (accessed on 26 November 2019).
- Mazziotta, M.; Pareto, A. Methods for Constructing Composite Indices: One for All or All for One? Rivista Italiana di Economia Demografia e Statistica 2013, LXVII n. 2, 67–80. [Google Scholar]
- Reckien, D. What is in an Index? Construction Method, Data Metric, and Weighting Scheme Determine the Outcome of Composite Social Vulnerability Indices. Reg. Environ. Chang. 2018, 18, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Kienberger, S.; Contreras, D.; Zeil, P. Spatial and Holistic Assessment of Social, Economic, and Environmental Vulnerability to Floods—Lessons from the Salzach River Basin, Austria. In Vulnerability to Natural Hazards—A European Perspective; Birkmann, J., Kienberger, S., Alexander, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 53–73. [Google Scholar] [CrossRef]
- Vincent, K. Creating an Index of Social Vulnerability to Climate Change in Africa; Tyndall Centre for Climate Change Research: Norwich, UK, 2004. [Google Scholar]
- Simpson, D.M. Indicator Issues and Proposed Framework for a Disaster Preparedness Index (DPI); Fritz Institute, Center for Hazards Research: Louisville, KY, USA, 2006. [Google Scholar]
- Downing, T.; Aerts, J.; Soussan, J.; Barthelemy, O.; Bharwani, S.; Ionescu, C.; Ziervogel, G. Integrating Social Vulnerability into Water Management; Stockholm Environment Institute: Oxford, UK, 2005. [Google Scholar]
- Vink, K. Vulnerable People and Flood Risk Management Policies; International Centre for Water Hazard and Risk Management (ICHARM): Tsukuba, Japan, 2014. [Google Scholar]
Model | Data Rescaling | Weighting | Aggregation |
---|---|---|---|
MMNA (Base Model) | Equations (1) and (2) | No Weights | Equations (7) and (10) |
MMISA | Equations (1) and (2) | Equations (4) and (5) | Equations (9) and (10) |
MMPCA | Equations (1) and (2) | Equation (6) | Equations (9) and (10) |
ZSNA | Equation (3) | No Weights | Equations (7) and (10) |
MMNG | Equations (1) and (2) | No Weights | Equations (8) and (11) |
Indicators | Normalized Values | Indicators Weights | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PD | 0.47 | 0.00 | 0.06 | 0.26 | 0.07 | 0.25 | 1.00 | 0.13 | 0.12 | 0.09 |
FPA | 0.61 | 0.06 | 0.15 | 0.02 | 0.00 | 0.76 | 0.16 | 0.97 | 1.00 | 0.07 |
DPR | 0.30 | 0.41 | 0.25 | 0.94 | 1.00 | 0.00 | 0.11 | 0.53 | 0.52 | 0.09 |
MMR | 0.00 | 0.19 | 0.18 | 0.12 | 1.00 | 0.08 | 0.65 | 0.37 | 0.14 | 0.09 |
LAIS | 0.41 | 0.00 | 1.00 | 0.25 | 0.82 | 0.27 | 0.30 | 0.34 | 0.35 | 0.10 |
KH | 0.59 | 1.00 | 0.61 | 0.50 | 1.00 | 0.15 | 0.00 | 0.50 | 0.09 | 0.08 |
AGL | 1.00 | 0.85 | 0.00 | 0.61 | 0.83 | 0.18 | 0.76 | 0.14 | 0.01 | 0.07 |
LR | 0.46 | 0.04 | 0.58 | 0.27 | 0.77 | 0.23 | 0.00 | 1.00 | 0.65 | 0.09 |
ASR | 0.16 | 1.00 | 0.84 | 0.00 | 0.73 | 0.46 | 0.38 | 0.78 | 0.76 | 0.09 |
FC | 1.00 | 0.33 | 0.99 | 0.15 | 0.00 | 0.92 | 1.00 | 0.50 | 0.58 | 0.07 |
MMHI | 0.67 | 0.67 | 0.67 | 0.67 | 0.00 | 0.00 | 0.00 | 1.00 | 0.67 | 0.08 |
FMM | 0.38 | 1.00 | 0.75 | 0.50 | 0.75 | 0.25 | 0.00 | 0.88 | 0.25 | 0.09 |
Factor Loadings | Indicators Weights | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
PD | −0.79 | −0.33 | −0.31 | 0.11 | 0.21 | 0.04 | 0.04 | 0.01 |
FPA | −0.18 | −0.19 | 0.80 | −0.31 | 0.01 | 0.01 | 0.25 | 0.05 |
DPR | 0.12 | 0.97 | −0.03 | 0.13 | 0.01 | 0.36 | 0.00 | 0.01 |
MMR | −0.02 | 0.32 | −0.23 | 0.83 | 0.00 | 0.04 | 0.02 | 0.36 |
LAIS | 0.23 | 0.02 | 0.29 | 0.75 | 0.02 | 0.00 | 0.03 | 0.29 |
KH | 0.74 | 0.45 | −0.39 | 0.08 | 0.18 | 0.08 | 0.06 | 0.00 |
AGL | −0.16 | 0.28 | −0.83 | −0.02 | 0.01 | 0.03 | 0.27 | 0.00 |
LR | 0.27 | 0.43 | 0.76 | 0.28 | 0.02 | 0.07 | 0.23 | 0.04 |
ASR | 0.80 | −0.20 | 0.19 | 0.24 | 0.21 | 0.02 | 0.01 | 0.03 |
FC | −0.28 | −0.87 | 0.17 | −0.05 | 0.03 | 0.29 | 0.01 | 0.00 |
MMIH | 0.40 | 0.22 | 0.41 | −0.63 | 0.05 | 0.02 | 0.07 | 0.21 |
FMM | 0.90 | 0.35 | −0.04 | −0.07 | 0.27 | 0.05 | 0.00 | 0.00 |
Method: PCA | ||||||||
Rotation: Varimax with Kaiser Normalization | ||||||||
Expl. Var. | 3.04 | 2.61 | 2.52 | 1.90 | ||||
Expl. Tot. | 0.30 | 0.26 | 0.25 | 0.19 |
Districts | MMNA | MMISA | MMPCA | ZSNA | MMNG | MR |
---|---|---|---|---|---|---|
Charsadda | 2 | 4 | 4 | 2 | 2 | 2 |
Chitral | 7 | 5 | 5 | 7 | 7 | 7 |
D.I. Khan | 5 | 3 | 3 | 5 | 5 | 5 |
Dir Lower | 9 | 8 | 8 | 9 | 9 | 9 |
Dir Upper | 3 | 1 | 1 | 3 | 4 | 3 |
Nowshera | 8 | 9 | 9 | 8 | 8 | 8 |
Peshawar | 6 | 7 | 7 | 6 | 6 | 6 |
Shangla | 1 | 2 | 2 | 1 | 1 | 1 |
Swat | 4 | 6 | 6 | 4 | 3 | 4 |
MMNA | MMISA | MMPCA | ZSNA | MMNG |
---|---|---|---|---|
0.00 | 1.56 | 1.56 | 0.00 | 0.22 |
MMNA | MMISA | MMPCA | ZSNA | MMNG | MR | |
---|---|---|---|---|---|---|
MMNA | — | |||||
MMISA | 0.80 | — | ||||
MMPCA | 0.80 | 1.00 *** | — | |||
ZSNA | 1.00 *** | 0.80 | 0.80 | — | ||
MMNG | 0.98 *** | 0.71 | 0.71 | 0.98 *** | — | |
MR | 1.00 *** | 0.80 | 0.80 | 1.00 *** | 0.98 *** | — |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazeer, M.; Bork, H.-R. Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan. Sustainability 2019, 11, 6695. https://doi.org/10.3390/su11236695
Nazeer M, Bork H-R. Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan. Sustainability. 2019; 11(23):6695. https://doi.org/10.3390/su11236695
Chicago/Turabian StyleNazeer, Muhammad, and Hans-Rudolf Bork. 2019. "Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan" Sustainability 11, no. 23: 6695. https://doi.org/10.3390/su11236695
APA StyleNazeer, M., & Bork, H.-R. (2019). Flood Vulnerability Assessment through Different Methodological Approaches in the Context of North-West Khyber Pakhtunkhwa, Pakistan. Sustainability, 11(23), 6695. https://doi.org/10.3390/su11236695