Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands
Abstract
:1. Introduction
1.1. History of Prairie-Pothole Wetland Climate and Land-Use Change Research
1.1.1. Hydrology of the Prairie Pothole Region
1.1.2. Climate Drivers
1.1.3. Land Use Drivers
1.1.4. Objectives and Research Questions
2. Materials and Methods
2.1. Study Site
2.2. Wetland and Catchment Delineation
2.3. Hydrological Modeling
3. Results
4. Discussion
5. Conclusions
- We successfully developed and validated a modeling framework for quantifying the relative effects of both climate and land-use change on a watershed in the PPR.
- Wetland hydrology responds best to the impacts of consolidation drainage during wet climate periods.
- Sustained wet periods can impact a terminal wetland similarly with or without drainage. However, drainage increased the rate at which the terminal wetland reached its spill point by years, and excess spill from a terminal wetland can have down-stream flooding implications.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Creed, I.F.; Lane, C.R.; Serran, J.N.; Alexander, L.C.; Basu, N.B.; Calhoun, A.J.K.; Christensen, J.R.; Cohen, M.J.; Craft, C.; D’Amico, E.; et al. Enhancing protection for vulnerable waters. Nat. Geosci. 2017, 10, 809. [Google Scholar] [CrossRef]
- Oliver, T.H.; Morecroft, M.D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wires Clim. Chang. 2014, 5, 317–335. [Google Scholar] [CrossRef]
- Yalcin, S.; Leroux, S.J. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction. Glob. Chang. Biol. 2018, 24, 3849–3861. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, A.J.K.; Mushet, D.M.; Bell, K.P.; Boix, D.; Fitzsimons, J.A.; Isselin-Nondedeu, F. Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem. Biol. Conserv. 2017, 211, 3–11. [Google Scholar] [CrossRef]
- Dahl, T.E. Status and Trends of Prairie Wetlands in the United States 1997 to 2009; U.S. Fish & Wildlife Service: Washington, DC, USA, 2014; p. 67.
- Balas, C.J.; Euliss, N.H.; Mushet, D.M. Influence of Conservation Programs on Amphibians using Seasonal Wetlands in the Prairie Pothole Region. Wetlands 2012, 32, 333–345. [Google Scholar] [CrossRef]
- Steen, V.; Skagen, S.K.; Noon, B.R. Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A. PLoS ONE 2014, 9, e96747. [Google Scholar] [CrossRef] [PubMed]
- Ando, A.W.; Mallory, M.L. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region. Proc. Natl. Acad. Sci. USA 2012, 109, 6484. [Google Scholar] [CrossRef] [PubMed]
- Marton, J.M.; Creed, I.F.; Lewis, D.B.; Lane, C.R.; Basu, N.B.; Cohen, M.J.; Craft, C.B. Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. Bioscience 2015, 65, 408–418. [Google Scholar] [CrossRef]
- Gleason, R.A.; Euliss, N.H.; Tangen, B.A.; Laubhan, M.K.; Browne, B.A. USDA conservation program and practice effects on wetland ecosystem services in the Prairie Pothole Region. Ecol. Appl. 2011, 21, S65–S81. [Google Scholar] [CrossRef]
- Rashford, B.S.; Adams, R.M.; Wu, J.; Voldseth, R.A.; Guntenspergen, G.R.; Werner, B.; Johnson, W.C. Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America. Reg. Environ. Chang. 2016, 16, 515–526. [Google Scholar] [CrossRef]
- Anteau, M.J.; Wiltermuth, M.T.; van der Burg, M.P.; Pearse, A.T. Prerequisites for Understanding Climate-Change Impacts on Northern Prairie Wetlands. Wetlands 2016, 36, 299–307. [Google Scholar] [CrossRef]
- Anteau, M.J. Do Interactions of Land Use and Climate Affect Productivity of Waterbirds and Prairie-Pothole Wetlands? Wetlands 2012, 32, 1–9. [Google Scholar] [CrossRef]
- Yocum, H.M.; Ray, A.J. Climate information to support wildlife management in the North Central United States. Reg. Environ. Chang. 2019, 19, 1187–1199. [Google Scholar] [CrossRef]
- Johnson, W.C.; Boettcher, S.E.; Poiani, K.A.; Guntenspergen, G. Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands 2004, 24, 385–398. [Google Scholar] [CrossRef]
- Renton, D.A.; Mushet, D.M.; DeKeyser, E.S. Climate Change and Prairie Pothole Wetlands: Mitigating Water-Level and Hydroperiod Effects through Upland Management; 2015-5004; US Department of the Interior: Washington, DC, USA, 2015; p. 32.
- Cressey, R.L.; Austin, J.E.; Stafford, J.D. Three Responses of Wetland Conditions to Climatic Extremes in the Prairie Pothole Region. Wetlands 2016, 36, 357–370. [Google Scholar] [CrossRef]
- Sloan, C.E. Ground-Water Hydrology of Prairie Potholes in North Dakota; 585C; US Government Printing Office: Washington, DC, USA, 1972.
- Levy, Z.F.; Rosenberry, D.O.; Moucha, R.; Mushet, D.M.; Goldhaber, M.B.; LaBaugh, J.W.; Fiorentino, A.J.; Siegel, D.I. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland. J. Hydrol. 2018, 557, 391–406. [Google Scholar] [CrossRef]
- Levy, Z.F.; Mills, C.T.; Lu, Z.L.; Goldhaber, M.B.; Rosenberry, D.O.; Mushet, D.M.; Lautz, L.K.; Zhou, X.L.; Siegel, D.I. Using halogens (Cl, Br, I) to understand the hydrogeochemical evolution of drought-derived saline porewater beneath a prairie wetland. Chem. Geol. 2018, 476, 191–207. [Google Scholar] [CrossRef]
- LaBaugh, J.W.; Mushet, D.M.; Rosenberry, D.O.; Euliss, N.H.; Goldhaber, M.B.; Mills, C.T.; Nelson, R.D. Changes in Pond Water Levels and Surface Extent Due to Climate Variability Alter Solute Sources to Closed-Basin Prairie-Pothole Wetland Ponds, 1979 to 2012. Wetlands 2016, 36, 343–355. [Google Scholar] [CrossRef]
- Nachshon, U.; Ireson, A.; van der Kamp, G.; Davies, S.R.; Wheater, H.S. Impacts of climate variability on wetland salinization in the North American prairies. Hydrol. Earth Syst. Sci. 2014, 18, 1251–1263. [Google Scholar] [CrossRef]
- Mushet, D.M.; McKenna, O.P.; LaBaugh, J.W.; Euliss, N.H.; Rosenberry, D.O. Accommodating State Shifts within the Conceptual Framework of the Wetland Continuum. Wetlands 2018, 38, 1–5. [Google Scholar] [CrossRef]
- Pomeroy, J.; Gray, D.; Shook, K.; Toth, B.; Essery, R.; Pietroniro, A.; Hedstrom, N. An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Process. 1998, 12, 2339–2367. [Google Scholar] [CrossRef]
- LaBaugh, J.W.; Rosenberry, D.O.; Mushet, D.M.; Neff, B.P.; Nelson, R.D.; Euliss, N.H. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction. J. Hydrol. Reg. Stud. 2018, 17, 1–23. [Google Scholar] [CrossRef]
- Mushet, D.M. Midcontinent Prairie-Pothole Wetlands and Climate Change: an Introduction to the Supplemental Issue. Wetlands 2016, 36, 223–228. [Google Scholar] [CrossRef]
- Winter, T.C. Hydrological, Chemical, and Biological Characteristics of a Prairie Pothole Wetland Complex under Highly Variable Climate Conditions: The Cottonwood Lake Area, East-Central North. Dakota; Geological Survey (USGS): Reston, VA, USA, 2003.
- Hayashi, M.; van der Kamp, G.; Rosenberry, D.O. Hydrology of prairie wetlands: understanding the integrated surface-water and groundwater processes. Wetlands 2016, 36, 237–254. [Google Scholar] [CrossRef]
- Winter, T.C.; Rosenberry, D.O. Hydrology of Prairie Pothole Wetlands during Drought and Deluge: A 17-Year Study of the Cottonwood Lake Wetland Complex in North Dakota in the Perspective of Longer Term Measured and Proxy Hydrological Records. Clim. Change 1998, 40, 189–209. [Google Scholar] [CrossRef]
- McKenna, O.P.; Mushet, D.M.; Rosenberry, D.O.; LaBaugh, J.W. Evidence for a climate-induced ecohydrological state shift in wetland ecosystems of the southern Prairie Pothole Region. Clim. Chang. 2017, 145, 273–287. [Google Scholar] [CrossRef]
- Niemuth, N.D.; Wangler, B.; Reynolds, R.E. Spatial and temporal variation in wet area of wetlands in the Prairie Pothole Region of North Dakota and South Dakota. Wetlands 2010, 30, 1053–1064. [Google Scholar] [CrossRef]
- Larson, D.L. Effects of Climate on Numbers of Northern Prairie Wetlands. Clim. Chang. 1995, 30, 169–180. [Google Scholar] [CrossRef]
- Dumanski, S.; Pomeroy, J.W.; Westbrook, C.J. Hydrological regime changes in a Canadian Prairie basin. Hydrol. Process. 2015, 29, 3893–3904. [Google Scholar] [CrossRef]
- Shook, K.; Pomeroy, J. Changes in the hydrological character of rainfall on the Canadian prairies. Hydrol. Process. 2012, 26, 1752–1766. [Google Scholar] [CrossRef]
- Todhunter, P.E. Mean hydroclimatic and hydrological conditions during two climatic modes in the Devils Lake Basin, North Dakota (USA). Lakes Reservoirs Sci. Policy Manag. Sustain. Use 2016, 21, 338–350. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.C.; Poiani, K.A. Climate Change Effects on Prairie Pothole Wetlands: Findings from a Twenty-five Year Numerical Modeling Project. Wetlands 2016, 36, 273–285. [Google Scholar] [CrossRef]
- LaBaugh, J.; Winter, T.; Swanson, G.; Rosenberry, D.; Nelson, R.; Euliss, N. Changes in atmospheric circulation patterns affect midcontinent wetlands sensitive to climate. Limnol. Oceanogr. 1996, 41, 864–870. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Alexander, L.C. The Role of Lake Expansion in Altering the Wetland Landscape of the Prairie Pothole Region, United States. Wetlands 2016, 36, 309–321. [Google Scholar] [CrossRef]
- Van der Kamp, G.; Hayashi, M. Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol. J. 2009, 17, 203–214. [Google Scholar] [CrossRef]
- Euliss, N.H.; Labaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Laubhan, M.R.K.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D. The wetland continuum: A conceptual framework for interpreting biological studies. Wetlands 2004, 24, 448–458. [Google Scholar] [CrossRef]
- Van der Valk, A.G. Water-level fluctuations in North American prairie wetlands. Hydrobiologia 2005, 539, 171–188. [Google Scholar] [CrossRef]
- McLean, K.I.; Mushet, D.M.; Renton, D.A.; Stockwell, C.A. Aquatic-Macroinvertebrate Communities of Prairie-Pothole Wetlands and Lakes Under a Changed Climate. Wetlands 2016, 36, 423–435. [Google Scholar] [CrossRef]
- Leibowitz, S.G.; Mushet, D.M.; Newton, W.E. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill and Merge Dynamics. Wetlands 2016, 36, 323–342. [Google Scholar] [CrossRef]
- Anteau, M.J.; Afton, A.D. Amphipod densities and indices of wetland quality across the upper-Midwest, USA. Wetlands 2008, 28, 184–196. [Google Scholar] [CrossRef]
- McLean, K.I.; Mushet, D.M.; Stockwell, C.A. From “Duck Factory” to “Fish Factory”: Climate Induced Changes in Vertebrate Communities of Prairie Pothole Wetlands and Small Lakes. Wetlands 2016, 36, 407–421. [Google Scholar] [CrossRef]
- Poiani, K.A.; Johnson, W.C. A Spatial Simulation Model of Hydrology and Vegetation Dynamics in Semi-Permanent Prairie Wetlands. Ecol. Appl. 1993, 3, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.C.; Millett, B.V.; Gilmanov, T.; Voldseth, R.A.; Guntenspergen, G.R.; Naugle, D.E. Vulnerability of northern prairie wetlands to climate change. Bioscience 2005, 55, 863–872. [Google Scholar] [CrossRef]
- Johnson, W.C.; Werner, B.; Guntenspergen, G.R.; Voldseth, R.A.; Millett, B.; Naugle, D.E.; Tulbure, M.; Carroll, R.W.H.; Tracy, J.; Olawsky, C. Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate. Bioscience 2010, 60, 128–140. [Google Scholar] [CrossRef] [Green Version]
- McKenna, O.P.; Mushet, D.M.; Scherff, E.J.; McLean, K.I.; Mills, C.T. The Pothole Hydrology-Linked Systems Simulator (PHyLiSS)—Development and Application of a Systems Model for Prairie-Pothole Wetlands; 2018-1165; Geological Survey (USGS): Reston, VA, USA, 2018; p. 34.
- Samson, F.; Knopf, F. Prairie conservation in North America. Bioscience 1994, 44, 418–421. [Google Scholar] [CrossRef] [Green Version]
- Tangen, B.A.; Wiltermuth, M.T. Prairie Pothole Region Wetlands and Subsurface Drainage Systems: Key Factors for Determining Drainage Setback Distances. J. Fish Wildlife Manag. 2018, 9, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Van Meter, K.J.; Basu, N.B. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol. Appl. 2015, 25, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Serran, J.N.; Creed, I.F. New mapping techniques to estimate the preferential loss of small wetlands on prairie landscapes. Hydrol. Process. 2016, 30, 396–409. [Google Scholar] [CrossRef]
- Cowardin, L.M.; Shaffer, T.L.; Arnold, P.M. Evaluations of Duck Habitat and Estimation of Duck Population Sizes with a Remote-Sensing-Based System; 2; U.S. Fish and Wildlife Service: Washington, DC, USA, 1995.
- Krapu, C.; Kumar, M.; Borsuk, M. Identifying Wetland Consolidation Using Remote Sensing in the North Dakota Prairie Pothole Region. Water Resour. Res. 2018, 54, 7478–7494. [Google Scholar] [CrossRef]
- Wiltermuth, M.T.; Anteau, M.J. Is consolidation drainage an indirect mechanism for increased abundance of cattail in northern prairie wetlands? Wetlands Ecol. Manag. 2016, 24, 533–544. [Google Scholar] [CrossRef]
- Dahl, T.E.; Allord, G.J. History of wetlands in the conterminous United States. In National Water Summary on Wetland Resources; Volume Water Supply Paper 2425; Fretwell, J.D., Williams, J.S., Redman, P.J., Eds.; U.S. Geological Survey: Washington, DC, USA, 1996; p. 439. [Google Scholar]
- Oslund, F.T.; Johnson, R.R.; Hertel, D.R. Assessing Wetland Changes in the Prairie Pothole Region of Minnesota From 1980 to 2007. J. Fish Wildlife Manag. 2010, 1, 131–135. [Google Scholar] [CrossRef]
- Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. USA 2013, 110, 4134–4139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.A. Wetland Losses Due to Row Crop Expansion in the Dakota Prairie Pothole Region. Wetlands 2013, 33, 175–182. [Google Scholar] [CrossRef]
- Rashford, B.S.; Bastian, C.T.; Cole, J.G. Agricultural Land-Use Change in Prairie Canada: Implications for Wetland and Waterfowl Habitat Conservation. Can. J. Agric. Econ. 2011, 59, 185–205. [Google Scholar] [CrossRef]
- Janke, A.K.; Anteau, M.J.; Stafford, J.D. Prairie wetlands confer consistent migrant refueling conditions across a gradient of agricultural land use intensities. Biol. Conserv. 2019, 229, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Van Der Kamp, G.; Stolte, W.J.; Clark, R.G. Drying out of small prairie wetlands after conversion of their catchments from cultivation to permanent brome grass. Hydrol. Sci. J. 1999, 44, 387–397. [Google Scholar] [CrossRef]
- McCauley, L.A.; Anteau, M.J.; van der Burg, M.P.; Wiltermuth, M.T. Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere 2015, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Kessler, A.C.; Brown, M.K.; Zvomuya, F. Climate and agricultural land use change impacts on streamflow in the upper midwestern United States. Water Resour. Res. 2015, 51, 5301–5317. [Google Scholar] [CrossRef]
- Stewart, R.E.; Kantrud, H.A. Classification of Natural Ponds and Lakes in the Glaciated Prairie Region; 92; US Bureau of Sport Fisheries and Wildlife: Washington, DC, USA, 1971; p. 64.
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmosp. Oceanic Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Wilen, B.O.; Bates, M. The US fish and wildlife service’s national wetlands inventory project. In Classification and Inventory of the World’s Wetlands; Springer: Berlin/Heidelberg, Germany, 1995; pp. 153–169. [Google Scholar]
- Understanding Color—Infrared Photographs; 129-01; Geological Survey (USGS): Reston, VA, USA, 2001.
- Lishawa, S.C.; Treering, D.J.; Vail, L.M.; McKenna, O.; Grimm, E.C.; Tuchman, N.C. Reconstructing plant invasions using historical aerial imagery and pollen core analysis: Typha in the Laurentian Great Lakes. Divers. Distrib. 2013, 19, 14–28. [Google Scholar] [CrossRef]
- McCauley, L.A.; Anteau, M.J. Generating Nested Wetland Catchments with Readily-Available Digital Elevation Data May Improve Evaluations of Land-Use Change on Wetlands. Wetlands 2014, 34, 1123–1132. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Shao, H.; Yu, Z.; Lindsay, J. Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed. Water 2018, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Vanderhoof, M.K.; Distler, H.E.; Lang, M.W.; Alexander, L.C. The influence of data characteristics on detecting wetland/stream surface-water connections in the Delmarva Peninsula, Maryland and Delaware. Wetlands Ecol. Manag. 2018, 26, 63–86. [Google Scholar] [CrossRef]
- USGS. 1/9th Arc-second Digital Elevation Models (DEMs)—USGS National Map 3DEP Downloadable Data Collection; U.S. Geological Survey: Washington, DC, USA, 2017.
- Cronshey, R.; McCuen, R.; Miller, N.; Rawls, W.J.; Robbins, S.; Woodward, D. Urban. Hydrology for Small Watersheds; United States Department of Agriculture: Washington, DC, USA, 1986.
- Palmer, W.C. Meteorological Drought; US Weather Bureau: Washington, DC, USA, 1965; p. 58.
- Hamon, W.R. Estimating potential evapotranspiration. J. Hydraulics Div. 1961, 87, 107–120. [Google Scholar]
- Huang, S.; Young, C.; Abdul-Aziz, O.I.; Dahal, D.; Feng, M.; Liu, S. Simulating the water budget of a Prairie Potholes complex from LiDAR and hydrological models in North Dakota, USA. Hydrol. Sci. J. 2013, 58, 1434–1444. [Google Scholar] [CrossRef] [Green Version]
- Couturier, D.; Ripley, E. Rainfall interception in mixed grass prairie. Can. J. Plant Sci. 1973, 53, 659–663. [Google Scholar] [CrossRef]
- Clark, O.R. Interception of rainfall by prairie grasses, weeds, and certain crop plants. Ecol. Monographs 1940, 10, 243–277. [Google Scholar] [CrossRef]
- Gleason, R.A.; Laubhan, M.K.; Euliss, N.H., Jr. Ecosystem Services Derived from Wetland Conservation Practices in the United States Prairie Pothole Region with an Emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs; 1745; US Geological Survey: Reston, VA, USA, 2008.
- Haque, A.; Ali, G.; Badiou, P. Hydrological dynamics of prairie pothole wetlands: Dominant processes and landscape controls under contrasted conditions. Hydrol. Process. 2018, 32, 2405–2422. [Google Scholar] [CrossRef]
- McIntyre, N.E.; Liu, G.; Gorzo, J.; Wright, C.K.; Guntenspergen, G.R.; Schwartz, F. Simulating the effects of climate variability on waterbodies and wetland-dependent birds in the Prairie Pothole Region. Ecosphere 2019, 10, e02711. [Google Scholar] [CrossRef] [Green Version]
- Steen, V.; Sofaer, H.R.; Skagen, S.K.; Ray, A.J.; Noon, B.R. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? Ecol. Evol. 2017, 7, 8841–8851. [Google Scholar] [CrossRef]
- Liu, G.; Schwartz, F.W. An integrated observational and model-based analysis of the hydrologic response of prairie pothole systems to variability in climate. Water Resour. Res. 2011, 47, 2. [Google Scholar] [CrossRef]
- Liu, G.; Schwartz, F.W.; Wright, C.K.; McIntyre, N.E. Characterizing the Climate-Driven Collapses and Expansions of Wetland Habitats with a Fully Integrated Surface–Subsurface Hydrologic Model. Wetlands 2016, 36, 287–297. [Google Scholar] [CrossRef]
- McIntyre, N.E.; Wright, C.K.; Swain, S.; Hayhoe, K.; Liu, G.; Schwartz, F.W.; Henebry, G.M. Climate forcing of wetland landscape connectivity in the Great Plains. Front. Ecol. Environ. 2014, 12, 59–64. [Google Scholar] [CrossRef]
- Ouyang, Z.; Becker, R.; Shaver, W.; Chen, J. Evaluating the sensitivity of wetlands to climate change with remote sensing techniques. Hydrol. Process. 2014, 28, 1703–1712. [Google Scholar] [CrossRef]
Year | Observed Area (m2) | Undrained Scenario % Difference from Observed | Drained Scenario % Difference from Observed |
---|---|---|---|
1952 | 41231 | 1.9% | +67.2% |
1959 | 56885 | 19.8% | +104.8% |
1965 | 77903 | −5.1% | +51.5% |
1979 | 104638 | −2.2% | +14.7% |
1982 | 89312 | 6.5% | +25.9% |
1990 | 69142 | 6.5% | +42.9% |
1997 | 120619 | −11.2% | −0.7% |
2003 | 109949 | +4.9% | 4.9% |
2004 | 115246 | −3.5% | −2.5% |
2005 | 120312 | −5.8% | −2.4% |
2006 | 120312 | −6.3% | −2.9% |
2008 | 108811 | +0.2% | 5.2% |
2009 | 115099 | −1.1% | 4.0% |
2010 | 116466 | −3.9% | 1.3% |
2014 | 121302 | −7.4% | −4.0% |
2018 | 119369 | −4.6% | −1.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKenna, O.P.; Kucia, S.R.; Mushet, D.M.; Anteau, M.J.; Wiltermuth, M.T. Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands. Sustainability 2019, 11, 6581. https://doi.org/10.3390/su11236581
McKenna OP, Kucia SR, Mushet DM, Anteau MJ, Wiltermuth MT. Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands. Sustainability. 2019; 11(23):6581. https://doi.org/10.3390/su11236581
Chicago/Turabian StyleMcKenna, Owen P., Samuel R. Kucia, David M. Mushet, Michael J. Anteau, and Mark T. Wiltermuth. 2019. "Synergistic Interaction of Climate and Land-Use Drivers Alter the Function of North American, Prairie-Pothole Wetlands" Sustainability 11, no. 23: 6581. https://doi.org/10.3390/su11236581