Mitigation of CO2 and N2O Emission from Cabbage Fields in Korea by Optimizing Tillage Depth and N-Fertilizer Level: DNDC Model Simulation under RCP 8.5 Scenario
Abstract
:1. Introduction
2. Methods and Materials
2.1. Model Prediction
2.1.1. Study Sites
2.1.2. Model Input Data
2.1.3. Identifying Best Farming Practices to Achieve Three Scenario Goals
2.2. Field Measurements
2.2.1. Experimental Site and Data Collection
2.2.2. Measurements of CO2 and N2O Emissions
2.3. Statistical Analysis
3. Results and Discussion
3.1. Field Verification of DNDC Model Predictions
3.2. Modeling Results under Different Farming Practices
3.2.1. Impacts of Farming Practices on Cabbage Yield and GHGs Emissions
3.2.2. Impacts of Climate Change on Cabbage Yield and GHGs Emissions
3.3. Model Results of the Best Farming Practices
3.4. Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the IPCC: Cambridge, UK; New York, NY, USA, 2013; p. 493. [Google Scholar]
- Food and Agriculture Organization (FAO). FAOSTAT Database; FAO: Rome, Italy, 2012; Available online: http://fao.org/faostat/en/#home (accessed on 22 August 2019).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report; Contribution of Working Groups I to the Fourth Assessment Report of the IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Li, H.; Qiu, J.; Wang, L.; Tang, H.; Li, C.; Van Ranst, E. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agric. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar] [CrossRef]
- Greenhouse Gas Inventory and Research Center (GIR). National Greenhouse Gas Inventory Report of Korea; GIR: Seoul, Korea, 2016. (In Korean) [Google Scholar]
- Abdalla, M.; Kumar, S.; Jones, M.; Burke, J.; Williams, M. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the CO2 gas flux from Irish agriculture. Glob. Planet. Chang. 2011, 78, 106–115. [Google Scholar] [CrossRef]
- Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Kroebel, R.; Li, C.; Qian, B.; Worth, D.E.; McConkey, B.G.; Drury, C.F. Assessing the effects of climate change on crop production and GHG emissions in Canada. Agric. Ecosyst. Environ. 2013, 179, 139–150. [Google Scholar] [CrossRef]
- Asano, K.; Yang, H.; Lee, Y.; Yoon, J. Designing optimized food intake patterns for Korean adults using linear programming (I): Analysis of data from the 2010–2014 Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2018, 51, 73–86. [Google Scholar] [CrossRef]
- Korean Statistical Information (KOSIS). Service Cultivated Area of Food Crops; KOSIS: Daejeon, Korea, 2015. (In Korean) [Google Scholar]
- Forte, A.; Fiorentino, N.; Fagnano, M.; Fierro, A. Mitigation impact of minimum tillage on CO2 and N2O emissions from a Mediterranean maize cropped soil under low-water input management. Soil Tillage Res. 2017, 166, 167–178. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Khalil, M.I.; Rahman, M.S.; Schmidhalter, U.; Olfs, H.W. Nitrogen fertilizer-induced mineralization of soil organic C and N in six contrasting soils of Bangladesh. J. Plant. Nutr. Soil Sci. 2007, 170, 210–218. [Google Scholar] [CrossRef]
- He, W.; Yang, J.Y.; Drury, C.F.; Smith, W.N.; Grant, B.B.; He, P.; Qian, B.; Zhou, W.; Hoogenboom, G. Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agric. Syst. 2018, 159, 187–198. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. J. Geophys. Res. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.; Wang, L.; Yang, L. Advance in a terrestrial biogeochemical model-DNDC model. Acta Ecol. Sin. 2011, 31, 91–96. [Google Scholar] [CrossRef]
- Yun, J.I. Predicting regional rice production in South Korea using spatial data and crop-growth modeling. Agric. Syst. 2003, 77, 23–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Zhou, X.; Moore, B. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecol. Modell. 2002, 151, 75–108. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Chem. Erde-Geochem. 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Zhuang, M.; Zhang, J.; Lam, S.K.; Li, H.; Wang, L. Management practices to improve economic benefit and decrease greenhouse gas intensity in a green onion-winter wheat relay intercropping system in the North China Plain. J. Clean. Prod. 2019, 208, 709–715. [Google Scholar] [CrossRef]
- Korea Rural Economic Institute (KREI). Introducing Direct Payment Program for Low-Carbon Farming Practices and Creating an Action Plan. Guideline; KREI: Naju, Korea, 2013. (In Korean) [Google Scholar]
- Hewitt, H.T.; Copsey, D.; Culverwell, I.D.; Harris, C.M.; Hill, R.S.R.; Keen, A.B.; McLaren, A.J.; Hunke, E.C. Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model. Dev. 2011, 4, 223–253. [Google Scholar] [CrossRef]
- Korea Rural Economic Institute (KREI). Vision of 2030/2050 Agriculture and Rural Sector in Korea; KREI: Naju, Korea, 2010. (In Korean) [Google Scholar]
- Hwang, W.; Kim, C.; Cho, K.; Hyun, S. Characteristics of Emission of Greenhouse Gases (CO2 and CH4) from Rice Paddy Fields in South Korea under Climate Change Scenario (RCP-8.5) using the DNDC Model. Pedosphere 2019, in press. [Google Scholar]
- Parkin, T.B.; Venterea, R.T. Chapter 3. Chamber-based trace gas flux measurements. In GRACEnet Sampling Protocols; Follett, R.F., Ed.; U.S. Department of Agriculture: Washington, DC, USA, 2010; pp. 1–39. [Google Scholar]
- Hong, S.G. A study on the threshold values of heavy rain warning in Korea. Asia-Pac. J. Atmos. Sci. 1999, 35, 178–192. [Google Scholar]
- Ghezzehei, T.A.; Sulman, B.; Arnold, C.L.; Bogie, N.A.; Berhe, A.A. On the role of soil water retention characteristic on aerobic microbial respiration. Biogeosciences 2019, 16, 1187–1209. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 2000, 32, 67–72. [Google Scholar] [CrossRef]
- Kragt, M.E.; Gibson, F.L.; Maseyk, F.; Wilson, K.A. Public willingness to pay for carbon farming and its co-benefits. Ecol. Econ. 2016, 126, 125–131. [Google Scholar] [CrossRef] [Green Version]
Data Type | Sub-Type | Unit | Model Prediction | Field Verification f | |
---|---|---|---|---|---|
Future Scenario d | Model Baseline e | ||||
Climate a | Temperature | °C | RCP 8.5 | Mean values between 2006 and 2015 | Administrative data for Deokso field in 2018 |
Precipitation | cm | ||||
Farming Practice b | Fertilizer level | kg N ha−1 | F1, F2, and F3 | F3 (conventional method) | F1 and F3 |
Tillage depth | cm | T1, T2, and T3 | T1 (conventional method) | T1 and T3 | |
Soil c | Bulk density | g cm−3 | Administrative soil database | Administrative soil database | Field measurement data |
Clay | % | ||||
Initial SOC | g kg−1 | ||||
pH | 1:5 |
Model Outcome | Cabbage Yield (t ha−1 yr−1) | Greenhouse Gas Emission (t CO2-eq ha−1 yr−1) d | |||||
---|---|---|---|---|---|---|---|
Farming Practice a | CO2 | N2O | |||||
2020s | 2090s | 2020s | 2090s | 2020s | 2090s | ||
T1F1 | 34.8 ± 3.0 b | 67.6 ± 5.1 | 9.3 ± 0.4 | 9.9 ± 0.4 | 2.8 ± 0.4 | 3.4 ± 0.3 | |
T1F2 | 55.2 ± 3.7 | 94.7 ± 5.4 | 9.8 ± 0.5 | 10.2 ± 0.4 | 4.3 ± 0.5 | 5.1 ± 0.4 | |
T1F3 (Conventional farming practice) | 65.4 ± 3.8 | 103.4 ± 6.7 | 10.1 ± 0.4 | 10.4 ± 0.4 | 6.2 ± 0.6 | 6.9 ± 0.5 | |
T2F1 | 38.7 ± 3.3 | 69.2 ± 5.1 | 10.0 ± 0.5 | 10.6 ± 0.5 | 2.4 ± 0.3 | 3.2 ± 0.3 | |
T2F2 | 56.6 ± 3.8 | 94.5 ± 5.7 | 10.7 ± 0.5 | 11.0 ± 0.5 | 3.8 ± 0.4 | 4.8 ± 0.4 | |
T2F3 | 64.2 ± 3.9 | 108.6 ± 5.7 | 10.9 ± 0.6 | 11.2 ± 0.5 | 5.8 ± 0.5 | 6.7 ± 0.5 | |
T3F1 | 50.4 ± 3.3 | 78.1 ± 5.0 | 11.3 ± 0.6 | 11.6 ± 0.5 | 2.2 ± 0.3 | 3.3 ± 0.3 | |
T3F2 | 59.7 ± 3.5 | 94.7 ± 5.1 | 11.7 ± 0.6 | 11.9 ± 0.5 | 3.7 ± 0.4 | 5.0 ± 0.4 | |
T3F3 | 65.8 ± 3.5 | 104.3 ± 5.2 | 11.8 ± 0.6 | 12.1 ± 0.6 | 5.7 ± 0.5 | 7.0 ± 0.5 | |
Baseline c (No climate change with T1F3) | 63.0 ± 3.4 | 61.2 ± 5.1 | 9.8 ± 0.5 | 9.8 ± 0.5 | 6.1 ± 0.4 | 6.1 ± 0.5 |
Model Outcome | Cabbage Yield (t ha−1 yr−1) | GHGs Emission (t CO2-eq ha−1 yr−1) c | |||
---|---|---|---|---|---|
Scenario Goals a | 2020s Demand Forecasting = 65.1 ± 3.3 | 2090s Demand Forecasting = 74.5 ± 3.7 | 2020s | 2090s | |
Minimizing GHGs | 35.5 ± 0.3 b | 68.6 ± 0.2 | 12.0 ± 0.1 (−26.4%) d | 13.3 ± 0.1 (−23.1%) | |
Maximizing Yield | 68.1 ± 1.3 | 109.2 ± 1.5 | 17.3 ± 0.4 (+6.13%) | 18.6 ± 0.3 (+7.51%) | |
Maintaining Demand | 65.2 ± 1.6 | 74.8 ± 2.0 | 16.0 ± 0.4 (−1.84%) | 13.9 ± 0.3 (−19.6%) | |
Conventional Method | 64.5 ± 3.8 | 103.4 ± 6.7 | 16.3 ± 1.1 | 17.3 ± 0.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, W.; Park, M.; Cho, K.; Kim, J.-G.; Hyun, S. Mitigation of CO2 and N2O Emission from Cabbage Fields in Korea by Optimizing Tillage Depth and N-Fertilizer Level: DNDC Model Simulation under RCP 8.5 Scenario. Sustainability 2019, 11, 6158. https://doi.org/10.3390/su11216158
Hwang W, Park M, Cho K, Kim J-G, Hyun S. Mitigation of CO2 and N2O Emission from Cabbage Fields in Korea by Optimizing Tillage Depth and N-Fertilizer Level: DNDC Model Simulation under RCP 8.5 Scenario. Sustainability. 2019; 11(21):6158. https://doi.org/10.3390/su11216158
Chicago/Turabian StyleHwang, Wonjae, Minseok Park, Kijong Cho, Jeong-Gyu Kim, and Seunghun Hyun. 2019. "Mitigation of CO2 and N2O Emission from Cabbage Fields in Korea by Optimizing Tillage Depth and N-Fertilizer Level: DNDC Model Simulation under RCP 8.5 Scenario" Sustainability 11, no. 21: 6158. https://doi.org/10.3390/su11216158
APA StyleHwang, W., Park, M., Cho, K., Kim, J. -G., & Hyun, S. (2019). Mitigation of CO2 and N2O Emission from Cabbage Fields in Korea by Optimizing Tillage Depth and N-Fertilizer Level: DNDC Model Simulation under RCP 8.5 Scenario. Sustainability, 11(21), 6158. https://doi.org/10.3390/su11216158