A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Quantifying Drought Exposure Index
2.3. Definition of Crop Drought Vulnerability Index (CDVI)
2.4. Selecting Socio-Economic Variables Relating to CDVI
2.5. Linking CDVI and Socio-Economic Variables Using Regression Models
3. Results
3.1. Temporal and Spatial Patterns of CDVI
3.2. Socio-Economic Factors Influencing CDVI
3.3. Relations between Time-Invariant Socio-Economic Variables and CDVI
3.4. Assessing the Relationship between Time-Variant Socio-Economic Variables and CDVI
4. Discussion
4.1. Changes in the Crop Drought Vulnerability
4.2. Major Factors Influencing Drought Vulnerability
4.3. Comparison of the Models Explaining the Relationship between CDVI and Socio-Economic Variables
5. Conclusions and Limitation
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; Department of Economic and Social Affairs, Population Division: United Nations, 2015. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, H.; Gaiser, T.; Ewert, F. What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa? Agric. Syst. 2014, 127, 161–177. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: United Kingdom and New York, NY, USA, 2014. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Chang.-Hum. Policy Dimens. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Williges, K.; Mechler, R.; Bowyer, P.; Balkovic, J. Towards an assessment of adaptive capacity of the European agricultural sector to droughts. Clim. Serv. 2017, 7, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Yeni, F.; Alpas, H. Vulnerability of global food production to extreme climatic events. Food Res. Int. 2017, 96, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Simelton, E.; Fraser, E.D.G.; Termansen, M.; Benton, T.G.; Gosling, S.N.; South, A.; Arnell, N.W.; Challinor, A.J.; Dougill, A.J.; Forster, P.M. The socioeconomics of food crop production and climate change vulnerability: A global scale quantitative analysis of how grain crops are sensitive to drought. Food Secur. 2012, 4, 163–179. [Google Scholar] [CrossRef]
- Fraser, E.D.G.; Simelton, E.; Termansen, M.; Gosling, S.N.; South, A. “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agric. For. Meteorol. 2013, 170, 195–205. [Google Scholar] [CrossRef]
- Blauhut, V.; Stahl, K.; Stagge, J.H.; Tallaksen, L.M.; De Stefano, L.; Vogt, J. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 2016, 20, 2779–2800. [Google Scholar] [CrossRef] [Green Version]
- Bahadur Kc, K.; Legwegoh, A.F.; Therien, A.; Fraser, E.D.G.; Antwi-Agyei, P. Food price, food security and dietary diversity: A comparative study of urban Cameroon and Ghana. J. Int. Dev. 2017, 30, 42–60. [Google Scholar]
- Bryan, B.A.; Huai, J.; Connor, J.; Gao, L.; King, D.; Kandulu, J.; Zhao, G. What actually confers adaptive capacity? Insights from agro-climatic vulnerability of Australian wheat. PLoS ONE 2015, 10, e0117600. [Google Scholar] [CrossRef] [PubMed]
- Ellis, F. The determinants of rural livelihood diversification in developing countries. J. Agric. Econ. 2000, 51, 289–302. [Google Scholar] [CrossRef]
- Keshavarz, M.; Maleksaeidi, H.; Karami, E. Livelihood vulnerability to drought: A case of rural Iran. Int. J. Disaster Risk Reduct. 2017, 21, 223–230. [Google Scholar] [CrossRef]
- Huai, J.J. Integration and typologies of vulnerability to climate change: A case study from Australian wheat sheep zones. Sci. Rep. 2016, 6, 33744. [Google Scholar] [CrossRef] [PubMed]
- Vincent, K. Uncertainty in adaptive capacity and the importance of scale. Glob. Environ. Chang.-Hum. Policy Dimens. 2007, 17, 12–24. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Huai, J.J. Dynamics of resilience of wheat to drought in Australia from 1991–2010. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Ericksen, P.; Thornton, P.; Notenbaert, A.; Cramer, L.; Jones, P.; Herrero, M. Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics; Research Program on Climate Change Agriculture and Food Security (CCAFS) Report No. 5; Climate Change Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2011. [Google Scholar]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Sys. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef]
- Epule, T.E.; Ford, J.D.; Lwasa, S. Projections of maize yield vulnerability to droughts and adaptation options in Uganda. Land Use Policy 2017, 65, 154–163. [Google Scholar] [CrossRef]
- Gbetibouo, G.A.; Ringler, C.; Hassan, R. Vulnerability of the South African farming sector to climate change and variability: An indicator approach. Nat. Resour. Forum 2010, 34, 175–187. [Google Scholar] [CrossRef]
- Hsiao, C. Panel data analysis—Advantages and challenges. Test 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Ward, C.S.; Torquebiau, R.; Xie, H. Improved Agricultural Water Management for Africa’s dryland; the World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Iglesias, A.; Quiroga, S.; Diz, A. Looking into the future of agriculture in a changing climate. Eur. Rev. Agric. Econ. 2011, 38, 427–447. [Google Scholar] [CrossRef]
- Folberth, C.; Yang, H.; Gaiser, T.; Liu, J.G.; Wang, X.Y.; Williams, J.; Schulin, R. Effects of ecological and conventional agricultural intensification practices on maize yields in Sub-Saharan Africa under potential climate change. Environ. Res. Lett. 2014, 9, 044004. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Crop Statistical Database, Food and Agricultural Organization of the UN, Rome. 2012. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 June 2017).
- McKee, T.B.; Doesken, N.J.; kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Lloyd-Hughes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Bordi, I.; Frigio, S.; Parenti, P.; Speranza, A.; Sutera, A. The analysis of the Standardized Precipitation Index in the Mediterranean area: Large-scale patterns. Ann. Geofis. 2001, 44, 965–978. [Google Scholar]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Osterle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef]
- Portmann, F.T.; Siebert, S.; Doll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, 1–24. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Kamali, B.; Abbaspour, K.C.; Lehmann, A.; Wehrli, B.; Yang, H. Uncertainty-based auto-calibration for crop yield—The EPIC+ procedure for a case study in Sub-Saharan Africa. Eur. J. Agron. 2018, 93, 57–72. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Klove, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Potopová, V.; Boroneanţ, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang.-Hum. Policy Dimens. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Damm, M. Mapping Social-Ecological Vulnerability to Flooding-A Sub-National Approach for Germany; Bonn, Rheinischen Friedrich-Wilhelms-Universität: Munich Germany, 2009. [Google Scholar]
- Kaufmann, D.; Kraay, A.; Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues. Hague J. Rule Law 2015, 3, 220–246. [Google Scholar] [CrossRef]
- Tu, Y.K.; Kellett, M.; Clerehugh, V.; Gilthorpe, M.S. Problems of correlations between explanatory variables in multiple regression analyses in the dental literature. Br. Dent. J. 2005, 199, 457–461. [Google Scholar] [CrossRef]
- Eggen, M.; Ozdogan, M.; Zaitchik, B.; Ademe, D.; Foltz, J.; Simane, B. Vulnerability of sorghum production to extreme, sub-seasonal weather under climate change. Environ. Res. Lett. 2019, 14, 045005. [Google Scholar] [CrossRef]
- Montaud, J. Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: A Macroeconomic Computable General Equilibrium Analysis; Revised 19; CATT - UPPA –University of Pau and Pays de l’Adour, 20 February 2019. [Google Scholar]
- Dumenu, W.K.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- ASSAR. Understanding Vulnerability and Adaptation in Semi-Arid Areas in Botswana; 2015. Available online: http://www.assar.uct.ac.za/sites/default/files/image_tool/images/138/Info_briefs/Botswana%20Information%20Brief.pdf (accessed on 10 August 2019).
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philos. Trans. R. Soc. 2011, 369, 117–136. [Google Scholar] [CrossRef]
- Zougmoré, R.B.; Partey, S.T.; Ouédraogo, M.; Torquebiau, E.; Campbell, B.M. Facing climate variability in sub-Saharan Africa: Analysis of climate-smart agriculture opportunities to manage climate-related risks. Cah. Agric. 2018, 27, 1–9. [Google Scholar] [CrossRef]
- Patt, A.; Gwata, C. Effective seasonal climate forecast applications: Examining constraints for subsistence farmers in Zimbabwe. Glob. Environ. Chang.-Hum. Policy Dimens. 2002, 12, 185–195. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E. Institutional adaptation to drought: The case of Fars Agricultural Organization. J. Environ. Manag. 2013, 127, 61–68. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, E.L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Chang.-Hum. Policy Dimens. 2011, 21, 227–237. [Google Scholar] [CrossRef]
- Simelton, E.; Fraser, E.D.G.; Termansen, M.; Forster, P.M.; Dougill, A.J. Typologies of crop-drought vulnerability: An empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environ. Sci. Policy 2009, 12, 438–452. [Google Scholar] [CrossRef]
- Cochrane, L.; Bekele, Y.W. Contextualizing narratives of economic growth and navigating problematic data: Economic trends in Ethiopia (1999–2017). Economics 2018, 6, 64. [Google Scholar] [CrossRef]
- Sandefur, J.; Glassman, A. The political economy of bad data: Evidence from African survey and administrative statistics. J. Dev. Stud. 2015, 51, 116–132. [Google Scholar] [CrossRef]
- Jerven, M.; Johnston, D. Statistical tragedy in Africa? Evaluating the data base for African economic development. J. Dev. Stud. 2015, 51, 111–115. [Google Scholar] [CrossRef]
SPI Classes | CDVI Classes | SPI or CDVI |
---|---|---|
Wet | No drought vulnerability | 1.0 and more |
Near normal | Low vulnerability | 0.001 to 0.99 |
Mild | Mild vulnerability | −0.99 to 0.0 |
Moderate | High vulnerability | −1.499 to −1.0 |
Severe | Very high vulnerability | −1.50 or less |
Category | Variable | Definition | Unit |
---|---|---|---|
Economic | GDP/capita | Gross domestic product | US$/capita |
Interest payment | Interest payments on external debt | % GNI | |
GNI | Gross national income | US$/capita | |
Agriculture GDP | Agriculture GDP | % GDP in total GDP | |
Human | HDI | Human development index | ratio ranging from 0 to 1 |
Health expenditure | Health expenditure per capita | US$/capita | |
Maternal mortality | Maternal mortality ratio | per 100,000 live births | |
Calorie intake | Calorie intake per capita | calorie | |
Food production index | Food crops that are edible and contain nutrients excluding coffee and tea. (average of 2004–2006 equals 100) | ratio of each year to the base period (2004–2006) | |
Resource | Agricultural area (ha/capita) | per capita land area that is either arable, under permanent crops, or under permanent pastures | ha/capita |
Fertilizer use (t/ha) | Nitrogen fertilizer use | tons/ha | |
Infrastructure | Water access (%) | % of population with access to improved drinking water source | percentage |
Electricity access (%) | % of rural population with access to electricity | percentage | |
Governance | Control of corruption | The extent to which public power is exercised for private gain, including both petty and grand forms of corruption, as well as “capture” of the state by elites and private interests | normalized values ranging from −2.5 to 2.5 |
Government effectiveness | The quality of public and civil service, policy formulation and implementation, the degree of its independence to political pressures, the credibility of the government’s commitment to policies | normalized values ranging from −2.5 to 2.5 | |
Political stability | The likelihood that the government will be destabilized or overthrown by unconstitutional or violent means | normalized values ranging from −2.5 to 2.5 | |
Voice & accountability | The extent to which a country’s citizens are able to participate in selecting their government, freedom of expression, freedom of association, and a free media | normalized values ranging from −2.5 to 2.5 |
Category | Variable | 5th, 50th, 95th Percentiles | |||
---|---|---|---|---|---|
Eastern SSA | Southern SSA | Central SSA | Western SSA | ||
Economic | GDP/capita | 177, 330, 700 | 696, 3025, 4455 | 224, 911, 6060 | 253, 551, 924 |
Agriculture GDP | 16, 36, 50 | 3.4, 8, 11.6 | 7.2, 23.2, 52.3 | 6.7, 34, 48.5 | |
Human | HDI | 0.3, 0.39, 0.48 | 0.46, 0.6, 0.9 | 0.3, 0.4, 0.6 | 0.26, 0.39, 0.49 |
Food production index | 82, 93, 101 | 89, 95, 103 | 87, 90, 108 | 82, 88, 97 | |
resource | Agricultural area | 0.23, 0.99, 3.4 | 0.53, 3.2, 5.8 | 1.1, 2.2, 21 | 0.43, 0.88, 12.3 |
Fertilizer use | 1.7, 5.7, 34 | 3.1, 7.8, 58 | 0.35, 3.5, 8.9 | 0.62, 7.8, 31 | |
Infrastructure | Water resource access | 32, 55, 78 | 54, 79, 95 | 45, 63, 84.6 | 44, 63, 83 |
Electricity access | 0.9, 2.6, 16 | 2.0, 17, 47 | 1, 13, 31 | 1, 8.2, 25 | |
Governance | Government effectiveness | −1.4, −0.7, −0.4 | −0.7, 0.2, 0.6 | −1.8, −1.2, −0.6 | −1.3, −0.8, −0.1 |
Model I: Simple linear regression model using the mean of 11 selected variables: R2 = 0.30 | ||||
---|---|---|---|---|
Variable | β | SE | t-stat | P-values |
Intercept | −1.25 | 0.79 | −1.58 | 0.9 |
GDP/capita | - | - | - | - |
Agriculture GDP | −0.72 | 0.25 | −2.87 | 0.007 |
HDI | - | - | - | - |
Food production index | 0.32 | 0.16 | 1.99 | 0.054 |
Agricultural land | - | - | - | - |
Fertilizer use | - | - | - | - |
Water resource access | - | - | - | - |
Electricity access | 0.34 | 0.18 | 1.90 | 0.065 |
Government effectiveness | - | - | - | - |
Model IIa: Fixed-effect regression model based on including drought and non-drought years: R2 = 0.66 | ||||
Variable | β | SE | t-stat | P-values |
GDP/capita | - | - | - | - |
Agriculture GDP | −0.09 | 0.032 | −2.87 | <0.001 |
HDI | 0.073 | 0.049 | 1.47 | 0.011 |
Food production index | 1.94 | 0.20 | 9.66 | <0.001 |
Agricultural land | - | - | - | - |
Fertilizer use | 0.132 | 0.055 | 2.401 | 0.02 |
Water resource access | - | - | - | - |
Electricity access | 2.787 | 0.642 | 4.34 | <0.001 |
Government effectiveness | 0.22 | 0.148 | 1.64 | −0.01 |
Model IIb: Fixed-effect regression model based on only including drought years: R2 = 0.68 | ||||
β | SE | t-stat | P-values | |
GDP/capita | - | - | - | - |
Agriculture GDP | −0.11 | 0.047 | −2.30 | 0.02 |
HDI | 0.158 | 0.070 | 2.39 | 0.019 |
Food production index | 2.01 | 0.299 | 6.72 | <0.001 |
Agricultural land | −0.109 | 0.047 | −2.306 | 0.020 |
Fertilizer use | 0.141 | 0.083 | 2.24 | 0.019 |
Water resource access | - | - | - | - |
Electricity access | 3.101 | 1.08 | 2.87 | <0.001 |
Government effectiveness | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamali, B.; Abbaspour, K.C.; Wehrli, B.; Yang, H. A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa. Sustainability 2019, 11, 6135. https://doi.org/10.3390/su11216135
Kamali B, Abbaspour KC, Wehrli B, Yang H. A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa. Sustainability. 2019; 11(21):6135. https://doi.org/10.3390/su11216135
Chicago/Turabian StyleKamali, Bahareh, Karim C. Abbaspour, Bernhard Wehrli, and Hong Yang. 2019. "A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa" Sustainability 11, no. 21: 6135. https://doi.org/10.3390/su11216135
APA StyleKamali, B., Abbaspour, K. C., Wehrli, B., & Yang, H. (2019). A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa. Sustainability, 11(21), 6135. https://doi.org/10.3390/su11216135