Next Article in Journal
How Does Urban Rail Transit Influence Residential Property Values? Evidence from An Emerging Chinese Megacity
Next Article in Special Issue
Sustainability Assessment of Annual and Permanent Crops: The Inspia Model
Previous Article in Journal
Understanding Pro-Environmental Behavior in the US: Insights from Grid-Group Cultural Theory and Cognitive Sociology
Previous Article in Special Issue
Large-Scale Grain Producers’ Application of Land Conservation Technologies in China: Correlation Effects and Determinants
Article Menu
Issue 2 (January-2) cover image

Export Article

Open AccessArticle
Sustainability 2019, 11(2), 533;

Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed

Institute of Biosystems Engineering, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
Received: 13 December 2018 / Revised: 8 January 2019 / Accepted: 17 January 2019 / Published: 20 January 2019
(This article belongs to the Special Issue Sustainable Crop Production Systems)
PDF [4472 KB, uploaded 20 January 2019]


The aim of the work was to produce three independent, multi-criteria models for the prediction of winter rapeseed yield. Each of the models was constructed in such a way that the yield prediction can be carried out on three dates: April 15th, May 31st, and June 30th. For model building, artificial neural networks with multi-layer perceptron (MLP) topology were used, on the basis of meteorological data (temperature and precipitation) and information about mineral fertilisation. The data were collected from the years, 2008–2015, from 328 production fields located in Greater Poland, Poland. An assessment of the quality of forecasts produced based on neural models was verified by determination of forecast errors using RAE (relative approximation error), RMS (root mean square error), MAE (mean absolute error) error indicators, and MAPE (mean absolute percentage error). An important feature of the produced prediction models is the ability to realize the forecast in the current agrotechnical year on the basis of the current weather and fertiliser information. The lowest MAPE error values were obtained for the neural model WR15_04 (April 15th) based on the MLP network with structure 15:15-18-11-1:1, which reached 7.51%. Other models reached MAPE errors of 7.85% for model WR31_05 (May 31st) and 8.12% for model WR30_06 (June 30th). The performed sensitivity analysis gave information about the factors that have the greatest impact on winter rapeseed yields. The highest rank of 1 was obtained by two networks for the same independent variable in the form of the sum of precipitation within a period from September 1st to December 31st of the previous year. However, in model WR15_04, the highest rank obtained a feature in the form of a sum of molybdenum fertilization in the current year (MO_CY). The models of winter rapeseed yield produced in the work will be the basis for the construction of new forecasting tools, which may be an important element of precision agriculture and the main element of decision support systems. View Full-Text
Keywords: winter rapeseed; yield prediction; neural model; MLP network; sensitivity analysis; precision agriculture winter rapeseed; yield prediction; neural model; MLP network; sensitivity analysis; precision agriculture

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Niedbała, G. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed. Sustainability 2019, 11, 533.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sustainability EISSN 2071-1050 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top