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Abstract: The aim of the work was to produce three independent, multi-criteria models for the
prediction of winter rapeseed yield. Each of the models was constructed in such a way that the yield
prediction can be carried out on three dates: April 15th, May 31st, and June 30th. For model building,
artificial neural networks with multi-layer perceptron (MLP) topology were used, on the basis of
meteorological data (temperature and precipitation) and information about mineral fertilisation.
The data were collected from the years, 2008–2015, from 328 production fields located in Greater
Poland, Poland. An assessment of the quality of forecasts produced based on neural models was
verified by determination of forecast errors using RAE (relative approximation error), RMS (root mean
square error), MAE (mean absolute error) error indicators, and MAPE (mean absolute percentage
error). An important feature of the produced prediction models is the ability to realize the forecast
in the current agrotechnical year on the basis of the current weather and fertiliser information.
The lowest MAPE error values were obtained for the neural model WR15_04 (April 15th) based on
the MLP network with structure 15:15-18-11-1:1, which reached 7.51%. Other models reached
MAPE errors of 7.85% for model WR31_05 (May 31st) and 8.12% for model WR30_06 (June 30th).
The performed sensitivity analysis gave information about the factors that have the greatest impact
on winter rapeseed yields. The highest rank of 1 was obtained by two networks for the same
independent variable in the form of the sum of precipitation within a period from September 1st to
December 31st of the previous year. However, in model WR15_04, the highest rank obtained a
feature in the form of a sum of molybdenum fertilization in the current year (MO_CY). The models of
winter rapeseed yield produced in the work will be the basis for the construction of new forecasting
tools, which may be an important element of precision agriculture and the main element of decision
support systems.

Keywords: winter rapeseed; yield prediction; neural model; MLP network; sensitivity analysis;
precision agriculture

1. Introduction

The prediction of the quantity and quality of crop yields is very important in terms of
planning, use as a means of production, current decision-making, transport, stockholding, and risk
management [1–3]. The prediction of yields during the growing season is the basis for estimating
production levels and expected yields at the end of the growing season, and therefore the amount of
income [4].

The results of plant production are strongly influenced by atmospheric conditions, which may
vary due to climate changes. Reliable estimates of the effects of climate change require the integration of
meteorological and crop data in the produced models [5]. The yield of plants depends on a large
number of factors, which are often correlated with each other and directly or indirectly affect the yield of
a particular plant. The most common factors are soil factors (pH, structure, organic matter content,

Sustainability 2019, 11, 533; doi:10.3390/su11020533 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-3721-6473
http://www.mdpi.com/2071-1050/11/2/533?type=check_update&version=1
http://dx.doi.org/10.3390/su11020533
http://www.mdpi.com/journal/sustainability


Sustainability 2019, 11, 533 2 of 13

nutrient levels), weather and climate factors (air temperature, precipitation, sunshine), soil cultivating
technology, plant variety, fertilisation technology and level, plant protection, harvesting technology,
and crop rotation [6].

Modern technologies of cultivation and harvesting of plants have an increasing impact on the
increase in the quantity and quality of yields. It is also connected with the possibility of using linear
and non-linear prediction models used to perform simulations before harvest, and, as a consequence,
to optimize the production process [1]. For example, in [7], the artificial neural network (ANN) and
linear regression method (MLR) were used to build the Ajowan (Trachyspermum ammi L.) yield model.
It was shown that all parameters of the model, i.e., determination coefficient (R2), mean absolute error
(MAE), and root mean square error (RMS) are better for the ANN model than for MLR. Similarly, in [8],
the ANN and MLR methods were used to produce a model of safflower yield (Carthamus tinctorius L.).
The results of analyses (R2, MAE, RMS) also confirm better results for ANN models than MLR
models. Therefore, crop yield models are used to develop forecasting tools, which can be an important
element of high-precision agriculture and the main element of the decision-making support systems [9].
Precision agriculture can help in managing crop production inputs in an environmentally friendly way.
By using site-specific knowledge, precision agriculture can target rates of fertilizer, seed and chemicals
for soil, and other conditions. The concepts of precision agriculture and sustainability are inextricably
linked. From the first time a global positioning system was used on agricultural equipment, the
potential for environmental benefits has been discussed. Intuitively, applying fertilizers and pesticides
only where and when they are needed should reduce the environmental burden [10].

Non-linear models are becoming more and more popular in practice. A particular increase can be
observed in the use of artificial neural networks in agriculture, where better analysis results are often
obtained than with classical statistical methods [1,6–8,11–19].

The rapeseed is one of the most important oilseeds. It is a basic raw material for the food
industry and an element of renewable energy sources as a component of biofuel for diesel engines.
In this context, competition in land use between food and energy crops is becoming a critical issue.
As a result, there is a growing demand for decision-making support tools [20–22].

Rapeseed is grown mainly in Europe, Canada, China, and India. In Poland, winter rapeseed
was cultivated in 2016 on 826,946 ha of sown area. The average yield per 1 ha was 26.8 dt and the
total production was 2,219,270 tons. Winter rape is a plant which occupies the third place in Poland
in terms of total cultivated area. The share of Polish winter rapeseed production in the European
Union in 2016 was ranked 3rd in 28 associated countries. First place was taken by France with an
area of 1,550,720 ha and a total production of 4,727,961 tons [23].

In recent years, the growing importance of rapeseed cultivation has led to many
attempts to adapt commonly known models of cultivation systems to simulate the yields of
winter rapeseed. The examples are CERES—Crop Environment Resource Synthesis [24],
AquaCrop—water-driven model [25], DSSAT—Decision Support System for Agrotechnology
Transfer [26], and APSIM—Agricultural Production Systems sIMulator [27]. For a reliable and accurate
yield prediction, it is necessary to obtain meteorological, cultivation, and fertilizer information.
Unfortunately, most models are based on information from specialised research. Consequently,
the use of prediction models based on such detailed data is not possible for a wide range of users.
Therefore, the aim of this paper is to create multi-criteria yield models on the basis of information
generally available to every farmer. These models are an important element of precision agriculture that
is part of the concept of sustainability, including respect for the natural environment. The novelty in
this paper is the selection of a data structure for the produced models. The division into meteorological
data and information on fertilisation from the previous year and from the current year is presented.
The data for the current year were additionally divided into three ranges and forecast dates—15th
April, 31st May, and 30th June. All data necessary to simulate the yield comes from the period
before winter rape harvest. Such actions lead to the minimisation of the forecast error. The dates for
carrying out the forecast, i.e., 15 April, 31 May, and 30 June, were defined with the cooperation of
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farmers. On these dates, in Greater Poland, an initial estimation of winter rapeseed yield is made.
Moreover, it is possible to simulate the yield at any time for future weather and fertilisation parameters.
This makes it possible to build different scenarios for cultivation and care, harvest, storage, and making
decisions about selling grain, considering price trends.

2. Materials and Methods

Prediction neural models were built based on data collected in the years, 2008-2015, from winter
rapeseed fields located in Poland, in the central and south-western part of Greater Poland, and
particularly in the districts of Poznań (52◦24′29.759” N 16◦56′0.672” E), Kościan (52◦5′10.77” N
16◦38′41.998” E), and Gostyń (51◦53′5.762” N 17◦0′47.829” E) (Figure 1). In total, data from 328 fields
were used for model construction and verification (Table 1). This information formed the basis for the
creation of a database for the construction of predictive neural models, which was divided into two
sets, A and B. Set A (292 fields) is composed of information from 2008-2014, which was used to build
models. Set B (36 fields) consists of information from 2015, which was not involved in model building,
but was used for model validation.
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Figure 1. Research area—Greater Poland, Poland.

Table 1. The number of productive fields of winter rapeseed divided into two sets, A and B.

Set A Set B

Year 2008 2009 2010 2011 2012 2013 2014 2015

Number of fields 32 49 48 50 45 28 40 36

Meteorological data—air temperature and precipitation for the research area and period—were
obtained from Davis stationary and mobile meteorological stations located closest to the research area,
namely in Kórnik, Gola, Turew, Piotrowo, and Stary Gołębin.

The construction of neural predictive models was prepared based on three predicted dates for
a calendar year: April 15th, May 31st, and June 30th. The models have been named, respectively,
WR15_04, WR31_05, and WR30_06. The models included factors (independent variables) that affect
crop yields and are easily available to agricultural producers (Table 2).

This approach to the prediction of winter rapeseed yields enables the making of forecasts and the
simulation of expected yields directly before harvesting, in the same agricultural year.
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Table 2. Data structure in neural prediction models.

Symbol Unit of
Measure Variable Name Model

WR15_04
Model

WR31_05
Model

WR30_06
The Scope

of Data

R9-12_LY mm
The sum of precipitation from

1 September to 31 December of
the previous year

+ + + 63–234

T9-12_LY ◦C

The average air temperature
from 1 September to
31 December of the

previous year

+ + + 4.9–9.4

R1-4_CY mm
The sum of precipitation from

1 January to 15 April of the
current year

+ + + 59–185

T1-4_CY ◦C
The average air temperature
from 1 January to 15 April of

the current year
+ + + −0.4–4.9

R4_CY mm
The sum of precipitation from

1 April to 30 April of the
current year

- + + 8.7–60.4

T4_CY ◦C
The average air temperature

from 1 April to 30 April of the
current year

- + + 5.9–12.2

R5_CY mm
The sum of precipitation from

1 May to 31 May of the
current year

- + + 14.2–132.5

T5_CY ◦C
The average air temperature
from 1 May to 30 May of the

current year
- + + 11.8–16.2

R6_CY mm
The sum of precipitation from

1 June to 30 June of the
current year

- - + 15–121

T6_CY ◦C
The average air temperature
from 1 June to 30 June of the

current year
- - + 14.2–19.6

N_LY kg ha−1
The sum of N

fertilization—autumn in the
previous year

+ + + 0–41

N_CY kg ha−1
The sum of N

fertilization—spring in the
current year

+ + + 0–175

P2O5_CY kg ha−1 The sum of P2O5 fertilization in
the current year + + + 0–104

K2O_CY kg ha−1 The sum of K2O fertilization in
the current year + + + 0–234

MGO_CY kg ha−1 The sum of MgO fertilization in
the current year + + + 0–298

SO3_CY kg ha−1 The sum of sulfate ions (VI)
fertilization in the current year + + + 14–115

B_CY g ha−1 The sum of B fertilization in the
current year + + + 0–3.66

CU_CY g ha−1 The sum of Cu fertilization in
the current year + + + 10–487

MN_CY g ha−1 The sum of Mn fertilization in
the current year + + + 70–600

MO_CY g ha−1 The sum of Mo fertilization in
the current year + + + 0–60

ZN_CY g ha−1 The sum of Zn fertilization in
the current year + + + 10–560

“+”—the variable exists in the model, “-”—the variable does not exist in the model.
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2.1. Method of Construction of Neural Models

Independent variables for the construction of neural models were selected in such a way that
each neural network used a different number of independent variables, which are presented in
Tables 1 and 2.

In the selection of a network topology and learning method, consideration was taken of the
network’s ability to approximate and generalise, based on measures of network quality. Using the
Statistica v7.1 [28] program, it was possible to test networks with different architectures. For each of
the neural models, WR15_04, WR31_05, and WR30_06, the number of networks tested was 10,000,
with the use of an automated network designer (AND). Network selection was made based on the best
parameters determining the network quality.

The set of empirical data was divided randomly into a learning set, a validation set, and a test set.
The sizes of the sets were as follows: Learning set—204 cases; validation set—44 cases; testing set—44 cases.
The set was divided in the proportions of 70%–15%–15%, taking account of the number of fields
included in the study.

2.2. Methodology for Validating the Neural Models

Following the construction of neural models using the automate network designer, each model
was evaluated based on information obtained from Statistica, namely the standard deviation, mean
error, error deviation, mean absolute error, deviation quotient, and correlation. The best model was
selected based on the smallest value of the mean absolute error and the largest value of the correlation.

In the next step, the predictive ability of the constructed neural models was evaluated using ex
post measures of the prediction error, comparing data from set B with the results of the predictions
made based on set A. These errors have the property that they are computed on the basis of materials
from the past, namely expired predictions and the corresponding actual values of the predicted
variable. The prediction error is the difference between the observed and predicted value.

Validation of the constructed models was performed based on data from the last year of the study
(2015) and covering 36 fields of winter rapeseed. These data were not used in the construction of the
neural models. The quality of the predictions was evaluated using a methodology widely described in
the literature [2,29–34].

• RAE—relative approximation error:

RAE =

√√√√∑n
i=1(yi − ŷi)

2

∑n
i=1(yi)

2 (1)

• RMS—root mean square error:

RMS =

√
∑n

i=1(yi − ŷi)
2

n
(2)

• MAE—mean absolute error:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

• MAPE—mean absolute percentage error:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (4)
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where,

n—number of observations;
yi—actual values obtained during research; and
ŷi—values given by the model.

For better visualisation of the relations between the observed and predicted yield, graphs were
plotted showing those relations for each prediction date.

2.3. Neural Network Sensitivity Analysis

In order to check which of the examined independent features contribute the most to the
explanation of the variability of biological yields of winter rapeseed, a sensitivity analysis of the neural
networks under construction was carried out. After removing a specific input variable (independent
trait) from the model, its influence on the total error of the neural network can be observed, which
allows the determination of the significance (influence on the output variable, i.e., yield) of individual
independent traits. Two indicators were used for this purpose. The error quotient—this is the
ratio of error to error obtained using all independent features, the larger this value is the greater is
the significance of the given feature. If it is less than 1, a feature may be removed from the model
in order to improve its quality, although this is not a compulsory procedure. Rank—this shows
numerically the ordering of the features by decreasing error, a rank of 1 indicating the greatest
significance for the network.

3. Results

As a result of the analyses, one neural model was selected for each prediction date.
Basic information on the quality of the neural models, WR15_04, WR31_05, and WR30_06, is given in
Table 3. The general structure of the designed neural network model is presented in Figure 2.

Table 3. The quality and structure of the neural models produced.

WR15_04 WR31_05 WR30_06

Neural Network
Structure

MLP
15:15-18-11-1:1

MLP
19:19-15-18-1:1

MLP
21:21-15-14-1:1

Learning error 0.1229 0.1053 0.0924
Validation error 0.0625 0.1051 0.1053

Test error 0.1283 0.1258 0.1277
Mean 3.3626 3.3626 3.3626

Standard deviation 1.0703 1.0703 1.0703
Average error 0.0762 −0.0401 −0.0245

Deviation error 0.7183 0.6264 0.6098
Mean Absolute error 0.5819 0.5021 0.4771
Quotient deviations 0.6711 0.5852 0.5697

Correlation 0.7413 0.8127 0.8218

To determine the quality of the prediction, computations applied for ex post methods were
performed, using the formulae (1–4). The results are given in Table 4.

In the next step, graphs were plotted showing the relationship between the actual and forecasted
yield for each prediction date. Figure 3 show this relationship for the models, WR15_04, WR31_05, and
WR30_06, respectively.
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Table 4. Measures prediction ex post of analyzed neural models.

Model RAE [-] RMS [t ha−1] MAE [t ha−1] MAPE [%]

WR15_04 0.075 0.337 0.282 7.51
WR31_05 0.091 0.401 0.344 7.85
WR30_06 0.081 0.341 0.306 8.12

Figure 3 shows a comparison of yield results for all models produced with the observed yield. As
it is easy to notice, fields no. 29 and 33 definitely differ from the average value of the observed yield,
which amounted to 3.81 t·ha−1. For field no. 29, the observed yield was 2.14 t·ha−1, and 4.63 t·ha−1

for field no. 33. The average value of the forecast yield for models WR15_04, WR31_05, and WR30_06
amounted to 3.92 t·ha−1, 3.58 t·ha−1, and 3.87 t·ha−1 respectively.
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Figure 3. Cont.
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Figure 3. Graphical presentation of the observed and predicted yield by neural model: (a) WR15_04,
(b) WR31_05, and (c) WR30_06.

Network Sensitivity Analysis

In the last step of the computations, network sensitivity analysis was carried out for all of the
constructed neural models. The results of this analysis are given in Table 5.

Table 5. Sensitivity analysis of the neural networks.

Variable

Model

WR15_04 WR31_05 WR30_06

Quotient Rank Quotient Rank Quotient Rank

R9-12_LY 1.1669 3 1.3693 1 1.1508 1
T9-12_LY 1.1933 2 1.0366 10 1.0529 9
R1-4_CY 1.0224 6 1.0599 6 1.0252 16
T1-4_CY 1.0250 5 1.0689 5 1.1034 3
R4_CY - - 1.0698 4 1.0906 4
T4_CY - - 1.0403 9 1.0376 12
R5_CY - - 1.1412 3 1.0881 5
T5_CY - - 1.2512 2 1.0340 14
R6_CY - - - - 1.0527 10
T6_CY - - - - 1.0471 11
N_LY 0.9966 14 1.0031 17 1.0296 15
N_CY 1.0124 10 1.0167 12 1.0163 19

P2O5_CY 1.0000 12 0.9796 19 0.9854 21
K2O_CY 0.9975 13 1.0043 15 1.0086 20
MGO_CY 1.0143 8 1.0550 7 1.1308 2
SO3_CY 1.0340 4 1.0295 11 1.0655 6
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Table 5. Cont.

Variable

Model

WR15_04 WR31_05 WR30_06

Quotient Rank Quotient Rank Quotient Rank

B_CY 1.0034 11 0.9911 18 1.0357 13
CU_CY 0.9905 15 1.0103 14 1.0200 18
MN_CY 1.0138 9 1.0033 16 1.0589 8
MO_CY 1.1935 1 1.0540 8 1.0650 7
ZN_CY 1.0220 7 1.0135 13 1.0239 17

As shown in Figure 4, model WR31_05 has the best match between the real yield and the forecasted
yield, for which the determination coefficient of R2 was 0.6286. The other models slightly deviate from
this result. In model WR15_04, the determination coefficient, R2, of 0.6187 was achieved, while in
model WR30_06, the determination coefficient, R2, of 0.5976 was obtained.

Figure 4. Cont.
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Figure 4. Relation between the observed and predicted yield by models (a) WR15_04, (b) WR31_05,
and (c) WR30_06.

4. Discussion

Three independent, multi-criteria models of winter rapeseed yield were produced in the following
study. These models were produced based on weather and crop information from the last seven years.
Moreover, the models were validated on the basis of data from 2015. The model WR15_04 was based
on field data, including 15 independent variables contained in Table 2. The data included basic weather
information from the previous and current year, as well as data on fertilisation with micro and macro
elements. Model WR31_05 (19 traits) was additionally enriched with weather data from April and May,
while in model WR30_06 (21 traits), the weather information from June was added. In each model,
the yield of winter rape expressed in t·ha−1 of cultivated area was forecasted.

A common problem in the process of prediction of plant yields using neural models is the
selection of the appropriate network topology. The most frequently used for prediction issues is the
MLP network, i.e., multilayer perceptron, which gives the best forecasting results. A good model
should adequately describe the behaviour of the system [31]. This means that the model under
construction should be similar to the tested empirical system, from which data for research, analysis,
and calculations are taken.

In view of the above, four ex post error measures were used in this work, i.e., relative
approximation error (RAE), root mean square error (RMS), mean absolute error (MAE), and mean
absolute percentage error (MAPE). They were used to determine the quality of models and to determine
yield forecast errors for winter rapeseed.

Table 4 shows the ex post error values for all models created. The most commonly used indicators
characterising the values of prediction errors belongs to MAPE [2,35]. The lowest values of MAPE
errors were obtained for the WR15_04 neural model based on the MLP network with a 15:15-18-11-1:1
structure, which reached 7.51%. Similar results were obtained for model WR31_05 - 7.85%. The highest
MAPE error of 8.12% was obtained for model WR30_06. Based on the literature [36], threshold values
for the assessment of errors may be indicated. If the error is less than 10%, the degree of fit of the
model is perfect; when it is in the range of 10% to 20%, the degree of fit of the model is good. In the
range of 20% to 30%, the error is acceptable, while above 30%, the degree of fitting is bad—such a
model is not usable. In this paper, all MAPE error results were up to 10%. In cases that are significantly
influenced by random conditions, the results obtained for all models are highly satisfying. Other ex
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post error rates—RAE, RMS, and MAE for all models produced also reached a satisfying level (Table 4).
On the basis of the results obtained, in order to illustrate the relation between the actual yield and the
forecast, three graphs were created (Figure 4).

In the next step, a network sensitivity analysis was carried out for all neural models produced.
The highest rank 1 was obtained for WR31_05 and WR30_06 models for the independent variable in
the form of the sum of precipitation in the period from 1th September to 31st December of the previous
year (R9-12_LY). This means that this factor had the greatest influence on the yield of winter rape in
the period from May to June. It is known that water is an essential factor for the correct and rapid
germination of seeds and the growth and development of the leaf rosette before the end of vegetation.
The accumulation of water resources in the soil during winter rest is an important reservoir to cover
the water needs of the canopy in early spring.

In model WR15_04, the highest rank was obtained by the sum of Mo fertilization (MO_CY).
This means that after sowing, in the period of initial plant growth, this component has the greatest
influence on the final yield. Interestingly, the second place was occupied by the feature of the
average temperature in the period from 1st September to 31st December of the previous year
(T9-12_LY). The values of the error quotient differed slightly from 1.1935 (MO_CY) and 1.1933
(T9-12_LY), respectively.

Molybdenum is an essential element for the proper growth and development of plants,
and its content in soil is traceable. The availability of this element depends on the pH of the
soil, the concentration of certain oxides (e.g., iron), and the amount of organic compounds in the
soil. The plant needs molybdenum to carry out multiple oxidation and reduction reactions [37].
Molybdenum deficiency in the Brassicaceae family, to which rapeseed belongs, is a characteristic feature.
They show gray-green discoloration of leaves, which become flaccid [38]. Plants have a low content of
chlorophyll and ascorbic acid [39]. The main aim of molybdenum rape fertilization is to increase its
resistance to low temperatures and to prepare the future yield structure.

To sum up, on the basis of the above results, it should be stated that the prediction of winter
rape yield with the use of artificial neural networks gives satisfactory results of the forecast. However,
in order to optimize the models, further research should be undertaken in order to obtain data from a
larger number of fields and further analysis of the number of independent factors in the models.

5. Conclusions

Prediction of agricultural crop yields is a useful tool in rational management of the means of
production and responsible management of crops in the era of climate change. Forecasting winter
rapeseed yields using artificial neural networks makes it possible to obtain an accurate yield forecast
before harvesting. This paper presents three neural models, which were constructed in such a way
that each of them predicts the yield in three different dates of the calendar year: April 15th—model
WR15_04, May 31st—model WR31_05, and June 30th—model WR30_06. All tested models were
characterized by high forecast accuracy, which was confirmed by very good values of their qualitative
parameters. The average absolute percentage error of MAPE, considered as the basic indicator of
model quality, did not exceed 10% in any model. The sensitivity analysis of neural networks indicates
a high influence of autumn-winter precipitation and molybdenum fertilization in shaping winter
rapeseed yields. The presented method of neural modelling extends the range of plant yield modelling
and may be an important element of precision agriculture. This method, after some modifications, may
be used for forecasting yields of other cultivated plants as well, which may result in measurable macro
and microeconomic effects. Moreover, the concept of neural modelling presented in this paper may
contribute to sustainability by reducing the doses of mineral fertilizers while keeping high yields of
cultivated plants at the same time.
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