Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydrolysed Human Urine
2.2. Electrochemical Cell Design and Operation
2.3. Air Cathode
2.4. Start-Up
2.5. Chemical Analysis
3. Results and Discussion
3.1. Cathode Catalytic Performance
3.2. Electricity Generation at Zero Power Input
3.3. Nutrient Recovery and Fertiliser Production
- (1)
- Normalized to total reactor volume
- (2)
- Normalized to membrane area (reactor cross-section)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cordell, D. Peak phosphorus and the role of P recovery in achieving food security. In Source Separation and Decentralisation for Wastewater Management; Larsen, T.A., Udert, K.M., Lienert, J., Eds.; IWA Publishing: London, UK, 2013; pp. 29–44. ISBN 9781843393481. [Google Scholar]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.; Vaccari, D. The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review. Resources 2018, 7, 37. [Google Scholar] [CrossRef]
- Kugler, K.; Ohs, B.; Scholz, M.; Wessling, M. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis. Phys. Chem. Chem. Phys. 2014, 16, 6129–6138. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Ghilardi, P.; Boguniewicz-Zablocka, J. New paradigms in urban water management for conservation and sustainability. Water Pract. Technol. 2016, 11, 176–186. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Daneshgar, S.; Buttafava, A.; Callegari, A.; Capodaglio, A.G. Economic and energetic assessment of different phosphorus recovery options from aerobic sludge. J. Clean. Prod. 2019, 223, 729–738. [Google Scholar] [CrossRef]
- Johansson, M.; Jönsson, H.; Höglund, C.; Richert Stintzing, A.; Rodhe, L. Final Report for Source-Separated Human Urine: A Future Source of Fertilizer for Agriculture in the Stockholm Region; Stockholm Vatten, Stockholmshem & HSB National Federation: Stockholm, Sweden, 2002. [Google Scholar]
- Wilsenach, J.A.; Schuurbiers, C.A.H.; van Loosdrecht, M.C.M. Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res. 2007, 41, 458–466. [Google Scholar] [CrossRef]
- Hug, A.; Udert, K.M. Struvite precipitation from urine with electrochemical magnesium dosage. Water Res. 2013, 47, 289–299. [Google Scholar] [CrossRef]
- Etter, B.; Tilley, E.; Khadka, R.; Udert, K.M. Low-cost struvite production using source-separated urine in Nepal. Water Res. 2011, 45, 852–862. [Google Scholar] [CrossRef]
- Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ. 2019, 668, 668–677. [Google Scholar] [CrossRef]
- Kuntke, P.; Śmiech, K.M.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012, 46, 2627–2636. [Google Scholar] [CrossRef]
- Christiaens, M.E.R.; Udert, K.M.; Arends, J.B.A.; Huysman, S.; Vanhaecke, L.; McAdam, E.; Rabaey, K. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants. Water Res. 2018, 150, 349–357. [Google Scholar] [CrossRef]
- Tarpeh, W.A.; Nelson, K.L. Electrochemical Stripping to Recover Nitrogen from Urine. Environ. Sci. Technol. 2018, 52, 1453–1460. [Google Scholar] [CrossRef]
- Siegrist, H.; Laureni, M.; Udert, K.M. (Eds.) Transfer into the gas phase: ammonia stripping. In Source Separation and Decentralisation for Wastewater Management; IWA Publishing: London, UK, 2013; pp. 337–350. [Google Scholar]
- Etter, B.; Hug, A.; Udert, K.M. Total Nutrient Recovery from Urine—Operation of a Pilot-Scale Nitrification Reactor. In Proceedings of the WEF/IWA International Conference on Nutrient Removal and Recovery 2013: Trends in Resource Recovery and Use, Vancouver, BC, Canada, 28–31 July 2013. [Google Scholar]
- Udert, K.M.; Buckley, C.A.; Wächter, M.; McArdell, C.S.; Kohn, T.; Strande, L.; Zöllig, H.; Fumasoli, A.; Oberson, A.; Etter, B. Technologies for the treatment of source-separated urine in the eThekwini Municipality. Water SA 2015, 41, 212–221. [Google Scholar] [CrossRef]
- Etter, B.; Udert, K.M.; Gounden, T. (Eds.) VUNA Final Report, Eawag; Swiss Federal Institute of Aquatic Science and Technology (EAWAG): Dübendorf, Switzerland, 2015. [Google Scholar]
- Pronk, W.; Zuleeg, S.; Lienert, J.; Escher, B.; Koller, M.; Berner, A.; Koch, G.; Boller, M. Pilot experiments with electrodialysis and ozonation for the production of a fertiliser from urine. Water Sci. Technol. 2007, 56, 219–227. [Google Scholar] [CrossRef]
- Pronk, W.; Biebow, M.; Boller, M. Electrodialysis for recovering salts from a urine solution containing micropollutants. Environ. Sci. Technol. 2006, 40, 2414–2420. [Google Scholar] [CrossRef]
- Fumasoli, A.; Etter, B.; Sterkele, B.; Morgenroth, E.; Udert, K.M. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Sci. Technol. 2016, 73, 215–222. [Google Scholar] [CrossRef]
- Udert, K.M.; Wächter, M. Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Res. 2012, 46, 453–464. [Google Scholar] [CrossRef]
- Pronk, W.; Palmquist, H.; Biebow, M.; Boller, M. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 2006, 40, 1405–1412. [Google Scholar] [CrossRef]
- Ledezma, P.; Jermakka, J.; Keller, J.; Freguia, S. Recovering Nitrogen as a Solid without Chemical Dosing: Bio-Electroconcentration for Recovery of Nutrients from Urine. Environ. Sci. Technol. Lett. 2017, 4, 119–124. [Google Scholar] [CrossRef]
- Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta 2007, 53, 598–603. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, H.; Logan, B.E. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Commun. 2006. [Google Scholar] [CrossRef]
- Nabae, Y.; Sonoda, M.; Yamauchi, C.; Hosaka, Y.; Isoda, A.; Aoki, T. Highly durable Pt-free fuel cell catalysts prepared by multi-step pyrolysis of Fe phthalocyanine and phenolic resin. Catal. Sci. Technol. 2014, 4, 1400–1406. [Google Scholar] [CrossRef]
- Nabae, Y.; Kuang, Y.; Chokai, M.; Ichihara, T.; Isoda, A.; Hayakawa, T.; Aoki, T. High performance Pt-free cathode catalysts for polymer electrolyte membrane fuel cells prepared from widely available chemicals. J. Mater. Chem. A 2014, 2, 11561–11564. [Google Scholar] [CrossRef]
- Blázquez, E.; Gabriel, D.; Baeza, J.A.; Guisasola, A.; Freguia, S.; Ledezma, P. Recovery of elemental sulfur with a novel integrated bioelectrochemical system with an electrochemical cell. Sci. Total Environ. 2019, 677, 175–183. [Google Scholar] [CrossRef]
- Soukharev, V.; Mano, N.; Heller, A. A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J. Am. Chem. Soc. 2004, 126, 8368–8369. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Arola, K.; Thompson Brewster, E.; Mehta, C.M.; Batstone, D.J. Nutrient recovery from wastewater through pilot scale electrodialysis. Water Res. 2018, 135, 57–65. [Google Scholar] [CrossRef]
- Cecconet, D.; Bolognesi, S.; Molognoni, D.; Callegari, A.; Capodaglio, A.G. Influence of reactor’s hydrodynamics on the performance of microbial fuel cells. J. Water Process Eng. 2018, 26, 281–288. [Google Scholar] [CrossRef]
- Monetti, J.; Ledezma, P.; Virdis, B.; Freguia, S. Nutrient Recovery by Bio-Electroconcentration is Limited by Wastewater Conductivity. ACS Omega 2019, 4, 2152–2159. [Google Scholar] [CrossRef]
Reactor 1 | Reactor 2 | |
---|---|---|
Average current density | 3.1 | 2.7 |
N-removal rate (g N m–3 d–1)(1) | 496 | 409 |
N-removal rate (g N m–2 d–1)(2) | 30 | 25 |
Energy input | 0 | 0 |
N upconcentration factor | 1.5 | 1.4 |
P upconcentration factor | 0.6 | 0.6 |
K upconcentration factor | 1.7 | 1.6 |
Na upconcentration factor | 1.4 | 1.4 |
Product-to-feed ratio | 0.054 | 0.046 |
Average | Standard Deviation (n = 6) | |
---|---|---|
pH | 8.1 | |
Ionic conductivity, mS cm−1 | 77 | |
NH4-N, mg L−1 | 11,600 | 600 |
PO4-P, mg L−1 | 202 | 4 |
K, mg L−1 | 3900 | 200 |
Na, mg L−1 | 4000 | 200 |
Ca, mg L−1 | 1 | 1 |
Mg, mg L−1 | < 1 | |
SO4-S, mg L−1 | 1020 | 70 |
Acetate, mg L−1 | 19,000 | 600 |
Cd, Cr, Cu, Pb, and Zn, mg L−1 | < 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freguia, S.; Logrieco, M.E.; Monetti, J.; Ledezma, P.; Virdis, B.; Tsujimura, S. Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine. Sustainability 2019, 11, 5490. https://doi.org/10.3390/su11195490
Freguia S, Logrieco ME, Monetti J, Ledezma P, Virdis B, Tsujimura S. Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine. Sustainability. 2019; 11(19):5490. https://doi.org/10.3390/su11195490
Chicago/Turabian StyleFreguia, Stefano, Maddalena E. Logrieco, Juliette Monetti, Pablo Ledezma, Bernardino Virdis, and Seiya Tsujimura. 2019. "Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine" Sustainability 11, no. 19: 5490. https://doi.org/10.3390/su11195490
APA StyleFreguia, S., Logrieco, M. E., Monetti, J., Ledezma, P., Virdis, B., & Tsujimura, S. (2019). Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine. Sustainability, 11(19), 5490. https://doi.org/10.3390/su11195490