The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland
Abstract
:1. Introduction
1.1. Background
1.2. Scope of the Paper
- (1)
- How large a share of heavy-duty road transport could the techno-economic potential of biomethane cover?
- (2)
- What would be the cost of biomethane utilization for the heavy-duty truck fleet?
- (3)
- How much transport related CO2 (and other) emissions could be avoided?
2. Methods, Materials and Assumptions
2.1. Assumptions on the Production of Biomethane
2.2. Assumptions Regarding Heavy-Duty Traffic: Vehicle Model and Scenarios
- Light duty (LD) including delivery vans, refuse collection vehicles and other single unit trucks <18 t
- Medium duty (MD) including semi-trailer combination vehicles >18 t < 60 t
- Heavy duty (HD) including all articulated vehicles >60 t
2.3. Assumptions Concerning Economic and Emission Saving Analysis
2.4. Limitations of the Methodology
3. Results and Discussion
3.1. Amount of Biomethane Available
3.2. Vehicle Class Scenarios
3.3. Economic and CO2 Savings Analysis
3.4. Policy Instruments
3.4.1. Feasibility of Biogas Production
3.4.2. Fuelling Infrastructure and Vehicles
3.4.3. Policy Cohesion—Towards the National Biogas Plan
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Figueroa Meza, M.J.; Fulton, L.; Kobayashi, S.; Lah, O.; et al. Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- International Energy Agency. Global Energy and CO2 Status Report 2017; International Energy Agency: Paris, France, 2018.
- International Energy Agency. Key World Energy Statistics; International Energy Agency: Paris, France, 2017.
- Det Kongelige Samferdselsdepartement. Meld. St. 33 (2016–2017)—Nasjonal Transportplan 2018–2029; Det Kongelige Samferdselsdepartement: Voss, Norway, 2017. [Google Scholar]
- Ridjan, I.; Mathiesen, B.V.; Connolly, D.; Duić, N. The feasibility of synthetic fuels in renewable energy systems. Energy 2013, 57, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Mathiesen, B.V.; Lund, H.; Connolly, D.; Wenzel, H.; Østergaard, P.A.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Liimatainen, H.; van Vliet, O.; Aplyn, D. The potential of electric trucks – An international commodity-level analysis. Appl. Energy 2019, 236, 804–814. [Google Scholar] [CrossRef]
- Baldino, C.; Nikita, P.; Searle, S.; Christensen, A. The Potential for Low-Carbon Renewable Methane in Heating, Power, and Transport in the European Union; Working Paper 2017-26; The International Council on Clean Transportation: Berlin, Germany, 2018. [Google Scholar]
- Capodaglio, A.G.; Callegari, A.; Lopez, M.V. European framework for the diffusion of biogas uses: Emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. Sustainability 2016, 8, 298. [Google Scholar] [CrossRef]
- Angelbratt, A.; Berggren, A. Potentials of LBM in Europe. LNG Blue Corridors Deliverable 3.9. 2005. Available online: http://lngbc.eu/system/files/deliverable_attachments/LNG%20BC%20D3.9%20Potential%20of%20LBM%20in%20Europe%20UPDATE.pdf (accessed on 28 August 2019).
- Börjesson, P.; Lantz, M.; Andersson, J.; Björnsson, L.; Fredriksson Möller, B.; Fröberg, M.; Hanarp, P.; Hulteber, C.; Iverfeldt, E.; Lundgren, J.; et al. Methane as Vehicle Fuels–A Well-to-Wheel Analysis (METDRIV); f3 The Swedish Knowledge Centre for Renewable Transportation Fuels: Göteborg, Sweden, 2016. [Google Scholar]
- IRENA Biogas for Road Vehicles: Technology Brief; International Renewable Energy Agency: Abu Dhabi, UAE, 2018.
- Khan, M.I.; Yasmin, T.; Shakoor, A. Technical overview of compressed natural gas (CNG) as a transportation fuel. Renew. Sustain. Energy Rev. 2015, 51, 785–797. [Google Scholar] [CrossRef]
- Lyng, K.A.; Brekke, A. Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels. Energies 2019, 12, 532. [Google Scholar] [CrossRef]
- Thiruvengadam, A.; Besch, M.; Padmanaban, V.; Pradhan, S.; Demirgok, B. Natural gas vehicles in heavy-duty transportation-A review. Energy Policy 2018, 122, 253–259. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Massimo, G.; Idiano, D.A.; Federica, C. Biomethane: A renewable resource as vehicle fuel. Resources 2017, 6, 58. [Google Scholar] [CrossRef]
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Bienert, K.; Schumacher, B.; Arboleda, M.R.; Billig, E.; Shakya, S.; Rogstrand, G.; Zielinski, M.; Debowski, M. Multi-Indicator Assessment of Innovative Small-Scale Biomethane Technologies in Europe. Energies 2019, 12, 1321. [Google Scholar] [CrossRef]
- Kalinichenko, A.; Havrysh, V.; Perebyynis, V. Evaluation of Biogas Production and Usage Potential. Ecol. Chem. Eng. 2016, 23, 387. [Google Scholar] [CrossRef]
- Connolly, D.; Mathiesen, B.V.; Ridjan, I. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy 2014, 73, 110–125. [Google Scholar] [CrossRef]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.D.; Lonza, L. Review of technologies for biomethane production and assessment of Eu transport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef]
- Scania. Scania Adds Gas Truck for Longer Transports. Press Release 8 November 2017. Available online: https://www.scania.com/group/en/scania-adds-gas-truck-for-longer-transports/ (accessed on 20 November 2018).
- Volvo Trucks. New Trucks from Volvo Running on LNG Offer the Same Performance as Diesel, but with 20–100% Lower CO2 Emissions. Available online: https://www.volvotrucks.com/en-en/news/press-releases/2017/oct/pressrelease-171003.html (accessed on 20 November.2018).
- IVECO New Stralis NP Brochure. Available online: https://www.iveco.com/uk/products/pages/gas-powered-for-long-haulage-new-stralis.aspx (accessed on 20 November 2018).
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Rajendran, K.; O’Gallachoir, B.; Murphy, J.D. The combined role of policy and incentives in promoting cost efficient decarbonisation of energy: A case study for biomethane. J. Clean. Prod. 2019, 219, 278–290. [Google Scholar] [CrossRef]
- Ammenberg, J.; Anderberg, S.; Lönnqvist, T.; Grönkvist, S.; Sandberg, T. Biogas in the transport sector: Actor and policy analysis focusing on the demand side in the Stockholm region. Resour. Conserv. Recycl. 2018, 129, 70. [Google Scholar] [CrossRef]
- Lönnqvist, T.; Sanches-Pereira, A.; Sandberg, T. Biogas potential for sustainable transport–a Swedish regional case. J. Clean. Prod. 2015, 108, 1105–1114. [Google Scholar] [CrossRef]
- Jensen, S.S.; Winther, M.; Jørgensen, U.; Møller, H.B. Scenarios for Use of Biogas for Heavy-Duty Vehicles in Denmark and Related GHG Emission Impacts; Trafikdage: Aalborg, Denmark, 2017. [Google Scholar]
- Uusitalo, V.; Soukka, R.; Horttanainen, M.; Niskanen, A.; Havukainen, J. Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renew. Energy 2013, 51, 132–140. [Google Scholar] [CrossRef]
- Gerring, J. Case Study Research: Principles and Practices; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- European Automobile Manufacturers Association. ACEA Report: Vehicles in Use–Europe 2018; European Automobile Manufacturers Association: Southfield, MI, USA, 2018. [Google Scholar]
- Eurostat. Annual Road Freight Transport, by Load Capacity of Vehicle (Mio Tkm, Mio Veh-km, 1 000 Jrnys). Available online: http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do (accessed on 19 June 2019).
- Official Statistics of Finland (OSF). Greenhouse Gases [e-publication]. ISSN=1797-6065. Available online: http://www.stat.fi/til/khki/index_en.html (accessed on 4 December 2018).
- Government of Finland. Government report on the National Energy and Climate Strategy for 2030. In Publications of the Ministry of Economic Affairs and Employment 12/2017; Government of Finland: Helsinki, Finland, 2017. [Google Scholar]
- Finnish Transport and Communications Agency. Open Vehicle Data. Available online: https://www.trafi.fi/en/information_services/open_data (accessed on 5 June 2018).
- Marttinen, S.; Luostarinen, S.; Winquist, E.; Timonen, K. Rural Biogas: Feasibility and Role in Finnish Energy System; Cluster for Energy and Environment: Helsinki, Finland, 2015. [Google Scholar]
- Uusitalo, V.; Havukainen, J.; Soukka, R.; Väisänen, S.; Havukainen, M.; Luoranen, M. Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector—A case study in Finland. Renew. Energy 2015, 80, 479–488. [Google Scholar] [CrossRef]
- Huttunen, S.; Kivimaa, P.; Virkamäki, V. The need for policy coherence to trigger a transition to biogas production. Environ. Innov. Soc. Transit. 2014, 12, 14–30. [Google Scholar] [CrossRef]
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is biogas an energy or a sustainability product?Business opportunities in the Finnish biogas branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Börjesson, P. Potential för Ökad Tillförsel och Avsättning av Inhemsk Biomassa i en Växande Svensk Bioekonomi; Lund University, Department of Technology and Society, Environmental and Energy Systems Studies: Lund, Sweeden, 2016; Volume 97, p. 85. [Google Scholar]
- Lyng, K.-A. Reduction of Environmental Impacts Through Optimisation of Biogas Value Chains; Drivers, Barriers and Policy Development, Norwegian University of Life Sciences: Ås, Norway, 2018. [Google Scholar]
- Larsson, M.; Grönkvist, S.; Alvfors, P. Upgraded biogas for transport in Sweden–effects of policy instruments on production, infrastructure deployment and vehicle sales. J. Clean. Prod. 2016, 112, 3774–3784. [Google Scholar] [CrossRef]
- Aro, K.; Rautiainen, A.; Talus, K.; Pääkkönen, A.; Aalto, P.; Kojo, M.; Rönkkö, T. Voiko raskas tieliikenne siirtyä biokaasuun? [Can Heavy-Duty Road Transport Switch over to Biogas?]. EL-TRAN Analysis 6/2018. Available online: http://urn.fi/URN:ISBN:978-952-03-0879-7 (accessed on 28 August 2019).
- Kilpeläinen, S.; Aalto, P.; Toivanen, P.; Lehtonen, P.; Holttinen, H. How to Achieve a More Resource-Efficient and Climate-Neutral Energy System by 2030? Views of Nordic Stakeholders: Views of Nordic Stakeholders. Rev. Policy Res. 2019, e0001. [Google Scholar] [CrossRef]
- Alamia, A.; Magnusson, I.; Johnsson, F.; Thunman, H. Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union. Appl. Energy 2016, 170, 445–454. [Google Scholar] [CrossRef]
- Alamia, A.; Larsson, A.; Breitholtz, C.; Thunman, H. Performance of large-scale biomass gasifiers in a biorefinery, a state-of-the-art reference: Evaluation of the GoBiGas gasifier. Int. J. Energy Res. 2017, 41, 2001–2019. [Google Scholar] [CrossRef]
- Kapdi, S.S.; Vijay, V.K.; Rajesh, S.K.; Prasad, R. Biogas scrubbing, compression and storage: Perspective and prospectus in Indian context. Renew. Energy 2005, 30, 1195–1202. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Patterson, T.; Esteves, S.; Dinsdale, R.; Guwy, A. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 2011, 39, 1806–1816. [Google Scholar] [CrossRef]
- Kalinci, Y.; Hepbasli, A.; Dincer, I. Biomass-based hydrogen production: A review and analysis. Int. J. Hydrogen Energy 2009, 34, 8799–8817. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation – From fundamentals to current projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Huttunen, M.; Kuittinen, V.; Lampinen, A. Finnish National Biogas Statistics—Data Year 2017; University of Eastern Finland: Joensuu, Finland, 2018. [Google Scholar]
- Wilen, C.; Moilanen, A.; Kurkela, E. Biomass Feedstock Analyses; VTT: Espoo, Finland, 1996; Volume 282. [Google Scholar]
- Pfeifer, C.; Puchner, B.; Hofbauer, H. Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem. Eng. Sci. 2009, 64, 5073–5083. [Google Scholar] [CrossRef]
- Göransson, K.; Söderlind, U.; He, J.; Zhang, W. Mittuniversitetet; Institutionen för naturvetenskap, t.o.m.; Fakulteten för naturvetenskap, t.o.m. Review of syngas production via biomass DFBGs. Renew. Sustain. Energy Rev. 2011, 15, 482–492. [Google Scholar] [CrossRef]
- Asadullah, M. Biomass gasification gas cleaning for downstream applications: A comparative critical review. Renew. Sustain. Energy Rev. 2014, 40, 118–132. [Google Scholar] [CrossRef]
- Molino, A.; Braccio, G. Synthetic natural gas SNG production from biomass gasification–Thermodynamics and processing aspects. Fuel 2015, 139, 425–429. [Google Scholar] [CrossRef]
- Kopyscinski, J.; Schildhauer, T.J.; Biollaz, S.M.A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel 2010, 89, 1763–1783. [Google Scholar] [CrossRef]
- VTT Technical Research Centre of Finland Ltd. LIPASTO Unit Emissions—Database. Available online: www.lipasto.vtt.fi/yksikkopaastot/ (accessed on 3 December 2018).
- Ristikartano, J.; Ilkkanen, P.; Tervonen, J.; Lapp, T. Nationwide Road Traffic Forecast 2030; Finnish Transport Agency: Helsinki, Finland, 2014. [Google Scholar]
- Niinikoski, M.; Moilanen, P. Developing the Calculation of Road Transport Performance; Finnish Transport Agency, Transport and Land Use: Helsinki, Finland, 2017. [Google Scholar]
- Nylund, N.-O. Heavy-Duty Vehicles: Safety, Environmental Impacts and New Technology (RASTU); Annual Report 2007; VTT: Espoo, Finland, 2008. [Google Scholar]
- Liimatainen, H.; Stenholm, P.; Tapio, P.; McKinnon, A. Energy efficiency practices among road freight hauliers. Energy Policy 2012, 50, 833–842. [Google Scholar] [CrossRef]
- Finnish Transport Agency. Finnish Road Statistics 2016. In Statistics from the Finnish Transport Agency 4/2017; Finnish Transport Agency: Helsinki, Finland, 2017. [Google Scholar]
- IRENA Biomass for Power Generation. Renewable Energy Technologies: Cost Analysis Series; International Renewable Energy Agency: Abu Dhabi, UAE, 2012. [Google Scholar]
- Official Statistics of Finland (OSF). Energy Prices [e-publication]. ISSN=1799-800X. 4th Quarter 2018. Available online: http://www.stat.fi/til/ehi/2018/04/ehi_2018_04_2019-03-13_tie_001_en.html (accessed on 13 March 2019).
- Finnish Customs. Finnish International Trade 2017 Figures and Diagrams. Finnish Customs Statistics. Available online: https://tulli.fi/en/statistics/key-figures-and-graphics (accessed on 11 January 2019).
- Eker, S.; van Daalen, E. A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty. Energy Policy 2015, 82, 178–196. [Google Scholar] [CrossRef]
- Business Finland. Energy Aid. Climate- and Environment-Friendly Investment and Investigation Projects. Available online: https://www.businessfinland.fi/en/for-finnish-customers/services/funding/energy-aid/ (accessed on 27 May 2019).
- Finnish Food Authority. Maatalouden Investointituet [Investment grants for agriculture]. Available online: https://www.ruokavirasto.fi/viljelijat/tuet-ja-rahoitus/maatalouden-investointituet/ (accessed on 27 May 2019).
- Kampman, B.; Leguijt, C.; Scholten, T.; Tallat-Kelpsaite, J.; Brückmann, R.; Maroulis, G.; Lesschen, J.P.; Meesters, K.; Sikirica, N.; Elbersen, B. Optimal Use of Biogas from Waste Streams—An Assessment of the Potential of Biogas from Digestion in the EU Beyond 2020; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Jensen, I.G.; Münster, M.; Pisinger, D. Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses. Eur. J. Oper. Res. 2017, 262, 744–758. [Google Scholar] [CrossRef] [Green Version]
- Lyng, K.-A.; Stensgård, A.E.; Hanssen, O.J.; Modahl, I.S. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains: A case study on different levels of sector integration. J. Clean. Prod. 2018, 182, 737–745. [Google Scholar] [CrossRef]
- Mutikainen, M.; Sormunen, K.; Paavola, H.; Haikonen, T.; Väisänen, M. Biokaasusta kasvua–Biokaasuliiketoiminnan ekosysteemien mahdollisuudet; Sitra: Helsinki, Finland, 2016. [Google Scholar]
- Skovsgaard, L.; Jensen, I.G. Recent trends in biogas value chains explained using cooperative game theory. Energy Econ. 2018, 74, 503–522. [Google Scholar] [CrossRef]
- Biohauki Oy. Company Web Page. Available online: http://www.biohauki.fi/ (accessed on 13 February 2019).
- Gasum. Gas Filling Stations. Available online: https://www.gasum.com/en/For-private-customers/Fill-up-on-gas/Gas-filling-stations/ (accessed on 19 December 2018).
- Gasum. Heavy-Duty Road Transport Entering the Age of Gas: Nordic Countries to Get a Network of 50 Filling Station. Available online: https://www.gasum.com/en/About-gasum/for-the-media/News/2018/heavy-duty-road-transport-entering-the-age-of-gas-nordic-countries-to-get-a-network-of-50-filling-stations/ (accessed on 27 November 2018).
- Act on Vehicle Tax (1281/2003). Available online: http://www.finlex.fi/fi/laki/ajantasa/2003/20031281 (accessed on 28 August 2019).
- NGV Natural Gas for Trucks Promoted by German Transport Ministry. Available online: https://www.ngvglobal.com/blog/natural-gas-for-trucks-promoted-by-german-transport-ministry-0617 (accessed on 11 January 2019).
- Dominiguez, J. Liquefied Biomethane Experiences—DRAFT. LNG Blue Corridors Deliverable 3.6. 2014. Available online: http://lngbc.eu/system/files/deliverable_attachments/LNG%20BC%20D%203.6%20Biomethane%20experiences.pdf. (accessed on 28 August 2019).
- Lönnqvist, T.; Grönkvist, S.; Sandberg, T. Forest-derived methane in the Swedish transport sector: A closing window? Energy Policy 2017, 105, 440–450. [Google Scholar] [CrossRef]
- Swedish Gas Association. Proposal for National Biogas Strategy 2.0; Swedish Gas Association: Energigas Sverige, Stockholm, 2018. [Google Scholar]
- Klima-og Miljødepartement. Nasjonal Tverrsektoriell Biogasstrategi; Klima-og Miljødepartement: Oslo, Norway, 2014. [Google Scholar]
- Natural Resources Institute Finland. Economydoctor. Agriculture and Horticulture. Available online: https://portal.mtt.fi/portal/page/portal/economydoctor/farm_economy/timeline/income_statement (accessed on 19 June 2019).
- Lukehurst, C.T.; Frost, P.; Al Seadi, T. Utilization of Digestate from Biogas Plants as Biofertilizer; IEA Bioenergy: Paris, France, 2010. [Google Scholar]
- Karunen, L. The Potentials of Producing Biogas Out of Farmyard Manure in Northern Middle Finland; Jyväskylä University of Applied Sciences: Berlin, Germany, 2010. [Google Scholar]
Compound | Vol-% | LHV (kJ/mol) |
---|---|---|
H2 | 47 | 241.8 |
CO2 | 21 | - |
CO | 15 | 283 |
CH4 | 10 | 802.3 |
CxHy | 4 | |
N2 | 3 | - |
sum | 100 |
Truck Class | Number of Vehicles | Mileage per Vehicle (km/a) |
---|---|---|
LD | 65,616 | 19,476 |
MD | 5652 | 80,060 |
HD | 18,123 | 73,358 |
Highway | Freeway | |||
---|---|---|---|---|
Truck Class | Empty Load | Full Load | Empty load | Full Load |
LD | 173 | 207 | 207 | 283 |
MD | 246 | 374 | 306 | 498 |
HD | 335 | 553 | 424 | 770 |
NOx [g/km] | CO2-eqv. [g/km] | |||||||
---|---|---|---|---|---|---|---|---|
Highway | Freeway | Highway | Freeway | |||||
Truck Class | Empty Load | Full Load | Empty Load | Full Load | Empty Load | Full Load | Empty Load | Full Load |
LD | 2.2 | 2.8 | 3.4 | 4.5 | 402 | 507 | 531 | 815 |
MD | 4.3 | 5.3 | 6.9 | 9.7 | 630 | 962 | 965 | 1662 |
HD | 4.7 | 6.5 | 8.3 | 14.0 | 834 | 1319 | 1298 | 2376 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pääkkönen, A.; Aro, K.; Aalto, P.; Konttinen, J.; Kojo, M. The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland. Sustainability 2019, 11, 4750. https://doi.org/10.3390/su11174750
Pääkkönen A, Aro K, Aalto P, Konttinen J, Kojo M. The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland. Sustainability. 2019; 11(17):4750. https://doi.org/10.3390/su11174750
Chicago/Turabian StylePääkkönen, Anna, Kalle Aro, Pami Aalto, Jukka Konttinen, and Matti Kojo. 2019. "The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland" Sustainability 11, no. 17: 4750. https://doi.org/10.3390/su11174750
APA StylePääkkönen, A., Aro, K., Aalto, P., Konttinen, J., & Kojo, M. (2019). The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland. Sustainability, 11(17), 4750. https://doi.org/10.3390/su11174750