Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Preparing LULC Maps
2.4. Intensity Analysis
3. Results
3.1. Land Use/Cover Maps
3.2. Intensity Analysis
4. Discussion
4.1. Patterns to Processes in LUCC
4.2. Driving Forces of LUCC
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mendoza-Poncea, A.; Corona-Núñezb, R.; Kraxnera, F.; Leduca, S.; Patrizioa, P. Identifying effects of land-use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Chang. 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Lambina, E.F.; Meyfroidt, P. Global land-use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Zhao, X.; Ma, S.; Cao, H.; Cao, J. Assessing spatial vulnerability from rapid urbanization to inform coastal urban regional planning. Ocean Coast Manag. 2016, 123, 53–65. [Google Scholar] [CrossRef]
- Huang, F.; Huang, B.; Huang, J.; Li, S. Measuring land change in coastal zone around a rapidly urbanized bay. Int. J. Environ. Res. Public Health 2018, 15, 1059. [Google Scholar] [CrossRef]
- Pourebrahim, S.; Hadipour, M.; Bin Mokhtar, M. Impact assessment of rapid development on land-use changes in coastal areas; case of Kuala Langat district, Malaysia. Environ. Dev. Sustain. 2015, 17, 1003–1016. [Google Scholar] [CrossRef]
- Kourosh Niya, A.; Huang, J.; Kazemzadeh-Zow, A.; Naimi, B. An adding/deleting approach to improve land change modeling: A case study in Qeshm Island, Iran. Arab. J. Geosci. 2019, 12, 333. [Google Scholar] [CrossRef]
- Ramesh, R.; Chen, Z.; Cummins, V.; Day, J.; D’Elia, C. Land–Ocean Interactions in the Coastal Zone: Past, present & future. Anthropocene 2015, 12, 85–98. [Google Scholar]
- Huang, J.; Pontius, R.G., Jr.; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Mohajane, M.; Essahlaoui, A.; Oudija, F.; Hafyani, M.E.; Hmaidi, A.E.; Ouali, A.E.; Randazzo, G.; Teodoro, A.C. Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 2018, 5, 131. [Google Scholar] [CrossRef]
- Msofe, N.K.; Sheng, L.; Lyimo, J. Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, South eastern Tanzania. Sustainability 2019, 11, 505. [Google Scholar] [CrossRef]
- Schaller, J.; Mattos, C. GIS Model Applications for Sustainable Development and Environmental Planning at the Regional Level. In GeoSpatial Visual Analytics; Amicis, R.D., Stojanovic, R., Conti, G., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Mwangi, H.M.; Lariu, P.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.-H. Characterizing the Intensity and Dynamics of Land-Use Change in the Mara River Basin, East Africa. Forests 2018, 9, 8. [Google Scholar] [CrossRef]
- Quan, B.; Ren, H.; Pontius, R.G., Jr.; Liu, P. Quantifying spatiotemporal patterns concerning land change in Changsha, China. Landsc. Ecol. Eng. 2018, 14, 257–267. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Gao, Y.; Giner, N.M.; Kohyama, T.; Osaki, M.; Hirose, K. Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia. Land 2013, 2, 351–369. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Pontius, J.G.R.; Hong, H. Land Classification and Change Intensity Analysis in a Coastal Watershed of Southeast China. Sensors 2014, 14, 11640–11658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinyemi, F.O.; Pontius, R.G., Jr.; Braimoh, A.K. Land change dynamics: Insights from Intensity Analysis applied to an African emerging city. J. Spat. Sci. 2016, 62, 69–83. [Google Scholar] [CrossRef]
- Shoyama, K.; Braimoh, A.K.; Avtar, R.; Saito, O. Land Transition and Intensity Analysis of Cropland Expansion in Northern Ghana. Environ. Manag. 2018, 62, 892–905. [Google Scholar] [CrossRef]
- Da, F.; Chen, X.; Qi, J. Spatiotemporal Characteristic of Land Use/Land Cover Changes in the Middle and Lower Reaches of Shule River Basin Based on an Intensity Analysis. Sustainability 2019, 11, 1360. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Pontius, R.G., Jr.; Tu, Z. Comparison of Intensity Analysis and the land-use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Sarvar, R.; Khaliji Oskouei, M.A. The role of Qeshm city in the regional economy development. J. Urban Econ. Manag. 2014, 2, 53–67. [Google Scholar]
- Financial Tribune, Qeshm Island: Persian Gulf Commercial Hub. 2015. Available online: https://financialtribune.com/articles/economy-domestic-economy/12704/qeshm-island-persian-gulf-commercial-hub (accessed on 7 March 2015).
- Mohammadi Mazraeh, H.; Pazhouhanfar, M. Effects of vernacular architecture structure on urban sustainability case study: Qeshm Island, Iran. Front. Archit. Res. 2018, 7, 11–24. [Google Scholar] [CrossRef]
- Mirza, R.; Moeinaddini, M.; Pourebrahim, S.; Zahed, M.A. Contamination, ecological risk and source identification of metals by multivariate analysis in surface sediments of the khouran Straits, the Persian Gulf. Mar. Poll. Bull. 2019, 145, 526–535. [Google Scholar] [CrossRef]
- Pourahmad, A.; Hosseini, A.; Pourahmad, A.; Zoghi, M.; Sadat, M. Tourist Value Assessment of Geotourism and Environmental Capabilities in Qeshm Island-Iran. Geoheritage 2018, 10, 687–706. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with gis-based cellular automata model. Ecol. Inform. 2016, 32, 145–155. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis, 5th ed.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef] [Green Version]
- Abdu, H.A. Classification accuracy and trend assessments of land cover- land use changes from principal components of land satellite images. Int. J. Remote Sens. 2019, 40, 1275–1300. [Google Scholar] [CrossRef]
- Foody, G. Status of land covers classification accuracy assessment. Remote Sens. Environ. 2002, 1, 185–201. [Google Scholar] [CrossRef]
- Zaehringer, J.G.; Eckert, S.; Messerli, P. Revealing Regional Deforestation Dynamics in North-Eastern Madagascar—Insights from Multi-Temporal Land Cover Change Analysis. Land 2015, 4, 454–474. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Map errors that could account for deviations from a uniform intensity of land change. Int. J. Geogr. Inf. Sci. 2013, 27, 1717–1739. [Google Scholar] [CrossRef]
- Enaruvbe, G.O.; Pontius, R.G., Jr. Influence of classification errors on Intensity Analysis of land changes in southern Nigeria. Int. J. Remote Sens. 2015, 36, 244–261. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Zenner, E.K.; Jaafari, A.; Ward, R.D. Modeling multi-decadal mangrove leaf area index in response to drought along the semi-arid southern coasts of Iran. Sci. Total Environ. 2019, 656, 1326–1336. [Google Scholar] [CrossRef]
- Zuo, L.J.; Xu, J.Y.; Zhang, Z.X. Spatial temporal land use change and landscape response in Bohai Sea coastal zone area. J. Remote Sens. 2011, 15, 604–620. (In Chinese) [Google Scholar]
- Yang, Y.; Liu, Y.; Xu, D. Use of intensity analysis to measure land use changes from 1932 to 2005 in Zhenlai County, Northeast China. Chin. Geogr. Sci. 2017, 27, 441–455. [Google Scholar] [CrossRef]
- Khoorani, A.; Bineiaz, M.; Amiri, H.R. Mangrove forest area changes due to climatic changes (Case study: Forest between the port and the Khamir island). J. Aquat. Ecol. 2015, 5, 100–111, (In Persian with English abstract). [Google Scholar]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Badmos, O.S.; Rienow, A.; Callo-Concha, D.; Greve, K.; Jürgens, C. Urban Development in West Africa—Monitoring and Intensity Analysis of Slum Growth in Lagos: Linking Pattern and Process. Remote Sens. 2018, 10, 1044. [Google Scholar] [CrossRef]
- Munsi, M.; Malaviya, S.; Oinam, G. A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. Reg. Environ. Chang. 2010, 10, 145. [Google Scholar] [CrossRef]
- Hakimian, H. Iran’s Free Trade Zones: Challenges and Opportunities. In Iran’s Economy at a Crossroads: Domestic and Global Challenges; University of Southern California (USC): Los Angeles, CA, USA, 2009. [Google Scholar]
- Ministry of the Interior of the Islamic Republic of Iran. Annual Statistical Report; Ministry of the Interior of the Islamic Republic of Iran: Hormozgan Province, Iran, 2016. [Google Scholar]
- Zarei, M.; Fatemi, M.R.; Mortazavi, M.S.; Pourebrahim, S.; Ghoddousi, J. Selection of the optimal tourism site using the ANP and fuzzy TOPSIS in the framework of Integrated Coastal Zone Management: A case of Qeshm Island. Ocean Coast Manag. 2016, 130, 179–187. [Google Scholar]
- Masnavi, M.R.; Amani, N.; Ahmadzadeh, A. Ecological Landscape Planning and Design Strategies for Mangrove Communities (Hara Forests) in South-Pars Special Economic Energy Zone, Asalouyeh-Iran. Environ. Nat. Resour. Res. 2016, 6. [Google Scholar] [CrossRef]
No. | Satellite | Sensors | Path | Row | Date |
---|---|---|---|---|---|
1 | Landsat5 | Thematic Mapper (TM) | 172 | 041 | 16 May 1996 |
2 | Landsat5 | Thematic Mapper (TM) | 042 | 16 May 1996 | |
3 | Landsat7 | Enhanced Thematic Mapper Plus (ETM+) | 041 | 25 May 2002 | |
4 | Landsat7 | Enhanced Thematic Mapper Plus (ETM+) | 042 | 9 May 2002 | |
5 | Landsat5 | Thematic Mapper (TM) | 041 | 17 May 2008 | |
6 | Landsat5 | Thematic Mapper (TM) | 042 | 17 May 2008 | |
7 | Landsat8 | Operational Land Imager (OLI) | 041 | 18 May 2014 | |
8 | Landsat8 | Operational Land Imager (OLI) | 042 | 18 May 2014 |
No. | Class Name | Description |
---|---|---|
1 | Agriculture | Land used for cultivation including orchards, cultivated land of all kinds of agricultural products. |
2 | Bare-land | Unused land, including barren land, wild grass ground, alkaline land, wetland, sand, waste land. |
3 | Built-up | Residential area, including urban, rural, industrial, all kinds of road, airport, surrounded enterprise area and generally human-made area. |
4 | Dense-vegetation | Densely covered vegetation range is recognizable on Landsat which are outside the range of the built-up and agriculture classes. |
5 | Mangrove | The range of mangroves, both natural and artificial. |
6 | Water-body | Includes sea area and water bodies inside the island. |
Symbol | Description |
---|---|
number of time points | |
year at time point t | |
index for the initial time point of an interval , where t ranges from 1 to T − 1 | |
number of categories | |
index for a category at the initial time point of an interval | |
index for a category at the latter time point of an interval | |
index of the gaining category for the selected transition | |
size of transition from category i to category j during interval | |
annual change during interval | |
intensity of annual gain of category j during interval relative to size of category j at time t + 1 | |
intensity of annual loss of category i during interval relative to size of category i at time t | |
intensity of annual transition from category i to category n during interval relative to size of category i at time t | |
uniform intensity of annual transition from all non-n categories to category n during interval relative to size of all non-n categories at time t |
2014 | ||||||||
---|---|---|---|---|---|---|---|---|
2008 | Categories | Agriculture | Bare-land | Built-up | Dense-vegetation | Mangrove | Water-body | Total |
Agriculture | 46,966 | 1266 | 415 | 686 | 0 | 0 | 49,333 | |
Bare-land | 4122 | 1,502,515 | 22,951 | 11,247 | 2594 | 7565 | 1,550,994 | |
Built-up | 0 | 0 | 66,958 | 0 | 0 | 0 | 66,958 | |
Dense-vegetation | 864 | 1144 | 30 | 3890 | 443 | 70 | 6441 | |
Mangrove | 0 | 3104 | 0 | 13 | 69,600 | 10,942 | 83,659 | |
Water-body | 1 | 6376 | 930 | 0 | 915 | 1,002,535 | 1,010,757 | |
Total | 51,953 | 1,514,405 | 91,284 | 15,836 | 73,552 | 1,021,114 | 2,768,142 | |
2008 | ||||||||
2002 | Categories | Agriculture | Bare-land | Built-up | Dense-vegetation | Mangrove | Water-body | Total |
Agriculture | 47,252 | 1450 | 510 | 370 | 0 | 1 | 49,583 | |
Bare-land | 1958 | 1,536,543 | 5978 | 3355 | 3672 | 1483 | 1,552,989 | |
Built-up | 2 | 22 | 59,980 | 0 | 0 | 0 | 60,004 | |
Dense-vegetation | 121 | 6629 | 90 | 2381 | 130 | 5 | 9356 | |
Mangrove | 0 | 1565 | 0 | 328 | 73,535 | 383 | 75,811 | |
Water-body | 0 | 4785 | 400 | 7 | 6322 | 1,008,885 | 1,020,399 | |
Total | 49,333 | 1,550,994 | 66,958 | 6441 | 83,659 | 1,010,757 | 2,768,142 | |
2002 | ||||||||
1996 | Categories | Agriculture | Bare-land | Built-up | Dense-vegetation | Mangrove | Water-body | Total |
Agriculture | 45,660 | 5643 | 19 | 293 | 0 | 0 | 51,615 | |
Bare-land | 3043 | 1,531,873 | 3927 | 6821 | 8823 | 17,278 | 1,571,765 | |
Built-up | 0 | 0 | 55,525 | 0 | 0 | 0 | 55,525 | |
Dense-vegetation | 813 | 7049 | 34 | 1839 | 52 | 0 | 9787 | |
Mangrove | 41 | 970 | 0 | 21 | 64,992 | 648 | 66,672 | |
Water-body | 26 | 7454 | 499 | 382 | 1944 | 1,002,473 | 1,012,778 | |
Total | 49,583 | 1,552,989 | 60,004 | 9356 | 75,811 | 1,020,399 | 2,768,142 |
Year | Error Count | Samples Count | Overall Accuracy | User’s Accuracy | Producer’s Accuracy | K-Standard |
---|---|---|---|---|---|---|
1996 | 36 | 300 | 88.00 | 89.81 | 88.00 | 0.85 |
2002 | 32 | 300 | 89.33 | 90.35 | 89.33 | 0.87 |
2008 | 33 | 300 | 89.00 | 89.72 | 89.00 | 0.86 |
2014 | 27 | 300 | 91.00 | 90.18 | 91.33 | 0.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kourosh Niya, A.; Huang, J.; Karimi, H.; Keshtkar, H.; Naimi, B. Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran. Sustainability 2019, 11, 4396. https://doi.org/10.3390/su11164396
Kourosh Niya A, Huang J, Karimi H, Keshtkar H, Naimi B. Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran. Sustainability. 2019; 11(16):4396. https://doi.org/10.3390/su11164396
Chicago/Turabian StyleKourosh Niya, Ali, Jinliang Huang, Hazhir Karimi, Hamidreza Keshtkar, and Babak Naimi. 2019. "Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran" Sustainability 11, no. 16: 4396. https://doi.org/10.3390/su11164396
APA StyleKourosh Niya, A., Huang, J., Karimi, H., Keshtkar, H., & Naimi, B. (2019). Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran. Sustainability, 11(16), 4396. https://doi.org/10.3390/su11164396