Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China
Abstract
:1. Introduction
1.1. Literature Review
1.2. Defining Sustainable Development in the Context of Environmental Regulation and R&D Activity
2. Data and Model Construction
2.1. Data Sources and Variables
2.1.1. International R&D Spillover Index
2.1.2. Environmental Regulation Intensity’s Index
2.1.3. Measurement of Control Variables
2.2. Model Construction
3. Results
3.1. Macro-Level Impact
3.2. Regional Level Impact
4. Conclusions and Policy Suggestion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, X.L.; Naminse, E.Y.; Du, J.G.; Zhuang, J.C. Nonrenwable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Jalil, A.; Feridun, M. The impact of growth, energy and financial development on the environment in China: A cointegration analysis. Energy Econ. 2011, 33, 284–291. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Empirical study of the environmental Kuznets curve and environmental sustainability curve hypothesis for Australia, China, Ghana and USA. J. Clean. Prod. 2018, 201, 98–110. [Google Scholar] [CrossRef]
- Mangra, M.G.; Cotoc, E.A.; Traistaru, A. Sustainable economic development through environmental management systems implementation. J. Stud. Soc. Sci. 2014, 6, 1–14. [Google Scholar]
- Westman, L.; Broto, V.C. Climate governance through partnerships: A study of 150 urban initiatives in China. Glob. Environ. Change 2018, 50, 212–221. [Google Scholar] [CrossRef]
- Vona, F.; Marin, G.; Consoli, D.; Popp, D. Environmenal regulation and green skills: An empirical exploration. J. Assoc. Environ. Resour. Econ. 2018, 5, 713–753. [Google Scholar]
- Sueyoshi, T.; Yuan, Y. Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Econ. 2017, 66, 154–166. [Google Scholar] [CrossRef]
- Yuan, B.L.; Xiang, Q.L. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on and extended CDM model. J. Clean. Prod. 2018, 176, 895–908. [Google Scholar] [CrossRef]
- Liu, J.P.; Lu, K.; Cheng, S.X. International R&D spillovers and innovation efficiency. Sustainability 2018, 10, 3974. [Google Scholar] [CrossRef]
- Wanlley, W. The contribution of environmental regulations to slowdown in productivity growth. J. Environ. Manag. 1994, 8, 381–390. [Google Scholar]
- Poter, M.E.; Linde, C.V. Toward a new conception of the environment competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Ambec, S.; Cohen, M.A.; Elgie, S.; Lanoie, P. The porter hypothesis at 20: Can environmental regulation enhance innovation and competitiveness. Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef]
- Han, X.F.; Hui, N.; Song, W.F. Environmental regulation’s influential effect on R&D technological progress. Forum Sci. Technol. 2014, 12, 75–79. (In Chinese) [Google Scholar]
- Chakraborty, P.; Chatterjee, C. Does environmental regulation indirectly induce upstream innovation? New evidence from India. Res. Policy 2017, 46, 939–955. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Palmer, K. Environmental regulation and innovation: A panel data study. Rev. Econ. Stat. 1997, 79, 610–619. [Google Scholar] [CrossRef]
- Ma, F.P.; Cha, N. The impact of environmental regulation on technological innovation performance: The moderating role of institutional environment. R&D Manag. 2012, 1, 60–66. (In Chinese) [Google Scholar]
- Dechezlepretre, A.; Sato, M. The impacts of environmental regulations on competitiveness. Rev. Environ. Econ. Policy 2017, 11, 183–206. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Xia, X.N.; Sheng, Z.; Zhang, D.P. Environmental regulation, goverment R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 2018, 10, 940. [Google Scholar] [CrossRef]
- Cohen, M.A.; Tubb, A. The impact of environmental regulation on firm and country competitiveness: A meta-analysis of the Porter hypothesis. J. Assoc. Environ. Resour. Econ. 2018, 5, 371–399. [Google Scholar] [CrossRef]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 53, 723–741. [Google Scholar]
- Madsen, J.B. Technology spillover through trade and TFP convergence: 135 years of evidence for the OECD countries. J. Int. Econ. 2007, 72, 464–480. [Google Scholar] [CrossRef] [Green Version]
- Javorcik, B.S. Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages. Am. Econ. Rev. 2004, 94, 605–627. [Google Scholar] [CrossRef]
- Krammer, S.M. International R&D spillovers in emerging markets: The impact of trade and foreign direct investment. J. Int. Trade Econ. 2010, 19, 591–623. [Google Scholar]
- Hassine, B.; Boudier, F.; Mathieu, C. The two ways of FDI R&D spillovers: Evidence from the French manufacturing industry. Appl. Econ. 2017, 49, 2395–2408. [Google Scholar]
- Zhuang, H.M.; Zheng, J.S. Research on the effect of FDI in China’s service industry. Manag. Rev. 2015, 27, 26. (In Chinese) [Google Scholar]
- Aldieri, L.; Sena, V.; Vinci, C.P. Domestic R&D spillovers and absorptive capacity: Some evidence for US, Europe and Japan. Int. J. Prod. Econ. 2018, 198, 38–49. [Google Scholar]
- Lee, D. The role of R&D and input trade in productivity growth: Innovation and technology spillovers. J. Technol. Transf. 2019, 1, 1–21. [Google Scholar]
- Hanna, R. US environmental regulation and FDI: Evidence from a panel of US-based multionational firms. Am. Econ. J. Appl. Econ. 2010, 2, 158–189. [Google Scholar] [CrossRef]
- Chung, S.H. Environmental regulation and foreign direct investment: Evidence from South Korea. J. Dev. Econ. 2014, 108, 222–236. [Google Scholar] [CrossRef]
- Tsurumi, T.; Managi, S.; Hibiki, A. Do environmental regulations increase bilateral trade flows? BE J. Econ. Anal. Policy 2015, 15, 1549–1577. [Google Scholar] [CrossRef]
- Mualtu, A. The structure of UK outbound FDI and environmental regulation. Environ. Resour. Econ. 2017, 68, 65–96. [Google Scholar] [CrossRef]
- Ramzy, M.; Zaki, C. Do environment regulations matter for EU-MENA trade? Appl. Econ. 2018, 50, 1549–1577. [Google Scholar] [CrossRef]
- Lichtenberg, F.R.; Potterie, B.P. International R&D spillovers: A comment. Eur. Econ. Rev. 1998, 42, 1483–1491. [Google Scholar]
- Weil, D.N. Capital and wealth in the twenty-first century. Am. Econ. Rev. 2015, 105, 34–37. [Google Scholar] [CrossRef]
- Berlemann, M.; Wesselhoft, J.E. Estimating aggregate capital stocks using the perpetual inventory method: A survey of previous implementations and new empirical evidence for 103 countries. Rev. Econ. 2016, 65, 1–34. [Google Scholar] [CrossRef]
- Ryan, S.P. The costs of environmental regulation in a concentrated industry. Econometrica 2012, 80, 1019–1061. [Google Scholar]
- Rubashkina, Y.; Galeotti, M.; Verdolini, E. Environmental regulation and competitiveness: Empirical evidence on the porter hypothesis from European manufacturing sectors. Energy Policy 2015, 83, 288–300. [Google Scholar] [CrossRef]
- Yin, J.H.; Zheng, M.Z.; Chen, J. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China. Energy Policy 2015, 77, 97–108. [Google Scholar] [CrossRef]
- Zivin, J.G.; Neidell, M. Environment, health, and human capital. J. Econ. Lit. 2013, 51, 689–730. [Google Scholar] [CrossRef]
- Zhan, H.; Yu, J.P. An Empirical Study on the Impact of Trade Opening on Environmental Pollution in China. Mod. Econ. Sci. 2015, 37, 39–46. (In Chinese) [Google Scholar]
Variable | Mean Value | Variance | Minimum Value | Maximum Value |
---|---|---|---|---|
FDISP | 1.0184 | 1.0829 | 0.0044 | 5.5974 |
IMSP | 1.0921 | 1.0521 | 0.0344 | 5.4957 |
ER1 | 0.0534 | 0.0470 | 0.0016 | 0.4831 |
ER2 | 0.1735 | 0.1396 | 0.0067 | 0.9919 |
LnED | 0.6249 | 0.6337 | −0.9939 | 2.1408 |
LnH | 0.0906 | 0.0594 | 0.0183 | 0.4121 |
SIZE | 2.1581 | 1.6585 | 0.4907 | 10.6983 |
Variable | Model 1 (FDISP) | Model 2 (FDISP) | Model 3 (IMSP) | Model 4 (IMSP) | ||||
---|---|---|---|---|---|---|---|---|
Fixed Effect | Random Effect | Fixed Effect | Random Effect | Fixed Effect | Random Effect | Fixed Effect | Random Effect | |
c | −2.1802 | −1.1858 | −3.4869 ** | −2.4185 * | −1.7437 | −0.7374 | −2.3872 * | −1.3726 |
(−1.54) | (−0.86) | (−2.56) | (−1.82) | (−1.23) | (−0.54) | (−1.78) | (−1.05) | |
ER1 | −10.5711 *** | −11.0064 *** | −5.2587 ** | −5.4495 ** | ||||
(−3.82) | (−4.01) | (−1.91) | (−2.00) | |||||
ER12 | 57.9141 *** | 58.4501 *** | 31.8609 *** | 31.8572 ** | ||||
(−3.79) | (−3.83) | (−2.1) | (−2.1) | |||||
ER13 | −81.1322 *** | −80.9156 *** | −47.7331 ** | −47.0848 ** | ||||
(−3.54) | (−3.53) | −2.09 | (−2.06) | |||||
LnED | 0.7979 *** | 0.8356 *** | 0.8486 *** | 0.8968 *** | 0.9894 *** | 1.0287 *** | 1.0115 *** | 1.0554 *** |
(8.34) | (8.82) | (8.85) | (9.44) | (10.39) | (10.94) | (10.73) | (11.35) | |
LnH | 1.5273 ** | 1.0591 | 2.0455 ** | 1.5270 ** | 1.2000 * | 0.7190 | 1.4629 ** | 0.9691 |
(2.27) | (1.63) | (3.1) | (2.38) | (1.79) | (1.12) | (2.25) | (−1.54) | |
SIZE | −0.0956 *** | −0.0954 *** | −0.1009 ** | −0.09939 *** | −0.0811 *** | −0.0791 *** | −0.0836 *** | −0.0812 *** |
(−4.67) | −4.78 | (−2.56) | (−4.89) | (−3.98) | (−4.00) | (−4.09) | (−4.08) | |
ER2 | −1.8519 ** | −1.7435 ** | −1.2228 | −1.1134 | ||||
(−2.14) | (−2.00) | (−1.44) | (−1.3) | |||||
ER22 | 4.2758 * | 3.8116 | 3.547 | 3.1441 | ||||
(1.78) | (−1.57) | (1.5) | (1.32) | |||||
ER23 | −2.6916 | −2.33 | −2.3872 ** | −2.2138 | ||||
(−1.5) | (−1.29) | (−1.78) | (−1.25) | |||||
Hausman | 0.0878 | 0.0343 | 0.0957 | 0.0873 | ||||
R2 | 0.5668 | 0.5661 | 0.5534 | 0.5525 | 0.6071 | 0.6065 | 0.6043 | 0.6036 |
F Test | 70.67 *** | 425.79 *** | 66.92 ** | 399.32 *** | 83.44 *** | 502.18 *** | 82.48 *** | 495.39 *** |
p-Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Inflection Point Value | 0.1284 | 0.3532 | 0.3036 | 0.7555 | 0.1094 | 0.3355 | 0.2222 | 0.7683 |
Variable | Model 1 (FDISP) | Model 2 (FDISP) | Model 3 (IMSP) | Model 4 (IMSP) |
---|---|---|---|---|
c | −8.8179 ** | −9.7500 *** | −9.6456 *** | −9.4387 *** |
(−2.18) | (−2.42) | (−2.73) | (2.72) | |
ER1 | −6.7358 | 6.9443 | ||
(−1.38) | (1.64) | |||
ER12 | 30.7778 | −23.2967 | ||
(1.40) | (−1.21) | |||
ER13 | −39.5955 | 22.9528 | ||
(−1.32) | (0.88) | |||
LnED | 0.5778 *** | 0.8486 *** | 1.0679 *** | 1.0281 *** |
(3.15) | (8.85) | (6.68) | (6.52) | |
LnH | 4.4186 ** | 2.0455 *** | 4.4280 *** | 4.4202 *** |
(2.34) | (3.1) | (2.69) | (2.69) | |
SIZE | −0.0970 ** | −0.1009 ** | −0.0612 *** | −0.0632 ** |
(−2.51) | (−2.56) | (−3.98) | (−1.91) | |
ER2 | −1.8356 | 0.8111 | ||
(−0.96) | (−0.49) | |||
ER22 | 4.3368 | 0.3242 | ||
(0.70) | (0.06) | |||
ER23 | −3.0971 | −1.2962 | ||
(−0.55) | (−0.27) | |||
R2 | 0.5498 | 0.5470 | 0.7579 | 0.7603 |
F Test | 18.93 *** | 18.72 *** | 48.51 *** | 49.16 *** |
p-Value | 0 | 0 | 0 | 0 |
Inflection Point Value | 0.1570 | 0.3243 | 0.4550 | 0.3809 |
0.3612 | 0.6093 | 0.2216 | −0.5476 |
Variable | Model 1 (FDISP) | Model 2 (FDISP) | Model 3 (IMSP) | Model 4 (IMSP) |
---|---|---|---|---|
c | −1.3754 ** | −5.5539 ** | −1.1696 | −5.3618 *** |
(−2.18) | (−2.82) | (−0.6) | (2.77) | |
ER1 | −31.3891 *** | −35.2783 *** | ||
(−4.26) | (−4.4) | |||
ER12 | 303.0909 *** | 308.3838 *** | ||
(3.34) | (3.47) | |||
ER13 | −843.9578 *** | −862.6848 *** | ||
(−2.68) | (−2.79) | |||
LnED | 1.2451 *** | 1.2455 *** | 1.2308 *** | 1.2329 *** |
(8.33) | (7.28) | (8.41) | (7.32) | |
LnH | 1.4166 | 3.1405** | 1.3132 | 3.0387 ** |
(1.5) | (3.22) | (1.42) | (3.16) | |
SIZE | −0.1702 ** | −0.1885 ** | −0.1662 *** | −0.1850 ** |
(−6.49) | (−6.46) | (−6.46) | (−6.44) | |
ER2 | −2.5761 * | −2.5342 * | ||
(−1.76) | (−1.75) | |||
ER22 | 5.4757 | 5.3822 | ||
(1.47) | (1.47) | |||
ER23 | −3.1921 | −3.1359 | ||
(−1.24) | (−1.24) | |||
R2 | 0.7652 | 0.7241 | 0.7673 | 0.7240 |
F Test | 56.48 *** | 45.50 *** | 57.16 *** | 45.46 *** |
p-Value | 0 | 0 | 0 | 0 |
Inflection Point Value | 0.0757 | 0.3311 | 0.2460 | 0.3314 |
0.1637 | 0.8125 | 0.4843 | 0.8128 |
Variable | Model 1 (FDISP) | Model 2 (FDISP) | Model 3 (IMSP) | Model 4 (IMSP) |
---|---|---|---|---|
c | 0.5192 | 0.7597 | 0.4562 | −5.3618 *** |
(0.28) | (−0.36) | (0.26) | (2.77) | |
ER1 | −63.4892 *** | −61.4629 *** | ||
(−6.35) | (−6.32) | |||
ER12 | 792.7665 *** | 760.6822 *** | ||
(6.12) | (6.03) | |||
ER13 | −2738.951 *** | −2616.8977 *** | ||
(−5.64) | (−5.53) | |||
LnED | 0.5290 *** | 0.7543 *** | 0.5209 *** | 0.7507 *** |
(4.96) | (4.96) | (3.66) | (5.08) | |
LnH | 0.1367 | 0.1367 | 0.8313 | 0.1936 |
(0.13) | (0.13) | (0.97) | (0.2) | |
SIZE | −0.0282495 | −0.0282495 | −0.1347 *** | −0.0309 |
(−0.49) | (−0.49) | (−2.92) | (−0.55) | |
ER2 | −5.8650 ** | −5.9937 ** | ||
(−2.14) | (−2.26) | |||
ER22 | 24.0966 * | 25.1676 * | ||
(1.77) | (1.90) | |||
ER23 | −28.6136 | −30.1374 * | ||
(−1.55) | (−1.68) | |||
R2 | 0.6201 | 0.5028 | 0.6262 | 0.5140 |
F Test | 31.29 *** | 19.38 *** | 32.11 *** | 20.27 *** |
p-Value | 0 | 0 | 0 | 0 |
Inflection Point Value | 0.0567 | 0.1784 | 0.0574 | 0.1726 |
0.1363 | 0.3831 | 0.1364 | 0.3842 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, T.; Guo, Q. Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China. Sustainability 2019, 11, 4353. https://doi.org/10.3390/su11164353
Liu C, Wang T, Guo Q. Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China. Sustainability. 2019; 11(16):4353. https://doi.org/10.3390/su11164353
Chicago/Turabian StyleLiu, Chengliang, Tao Wang, and Qingbin Guo. 2019. "Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China" Sustainability 11, no. 16: 4353. https://doi.org/10.3390/su11164353
APA StyleLiu, C., Wang, T., & Guo, Q. (2019). Does Environmental Regulation Repress the International R&D Spillover Effect? Evidence from China. Sustainability, 11(16), 4353. https://doi.org/10.3390/su11164353