# Design of Takagi-Sugeno Fuzzy Control Scheme for Real World System Control

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The System Control Strategy

**Lemma 1.**

## 3. Simulation Results

#### 3.1. Balance Control

#### 3.2. Balance Control with External Disturbance

## 4. Experiment Results

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Liang, Y.W.; Xu, S.D.; Liaw, D.C.; Chen, C.C. A study of T–S model-based SMC scheme with application to robot control. IEEE Trans. Ind. Electron.
**2008**, 55, 3964–3971. [Google Scholar] [CrossRef] - Tanaka, K.; Iwasaki, M.; Wang, H.O. Switching control of an R/C hovercraft: Stabilization and smooth switching. IEEE Trans. Syst. Man. Cybern. B. Cybern.
**2001**, 31, 853–863. [Google Scholar] [CrossRef] [PubMed] - Tanaka, K.; Ohtake, H.; Wang, H.O. A practical design approach to stabilization of a 3-DOF RC helicopter. IEEE Trans. Control Syst. Technol.
**2004**, 12, 315–325. [Google Scholar] [CrossRef] - Begovich, O.; Sanchez, E.N.; Maldonado, M. Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot. IEEE Trans. Control Syst. Technol.
**2002**, 10, 14–20. [Google Scholar] [CrossRef] - Xu, J.X.; Guo, Z.Q.; Lee, T.H. Design and implementation of a Takagi-Sugeno-Type fuzzy logic controller on a two-wheeled mobile robot. IEEE Trans. Ind. Electron.
**2013**, 60, 5717–5728. [Google Scholar] [CrossRef] - Chiu, C.H.; Tsai, W.R. Design and implementation of an omnidirectional spherical mobile platform. IEEE Trans. Ind. Electron.
**2015**, 62, 1619–1628. [Google Scholar] [CrossRef] - Huang, J.; Ri, S.; Liu, L.; Wang, Y.; Kim, J.; Pak, G. Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Technol.
**2015**, 23, 2400–2407. [Google Scholar] [CrossRef] - Liu, S.; Sun, D. Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE Trans. Mechatron.
**2014**, 19, 401–411. [Google Scholar] [CrossRef] - Chiu, C.H. The design and implementation of a wheeled inverted pendulum using an adaptive output Recurrent cerebellar model articulation controller. IEEE Trans. Ind. Electron.
**2010**, 57, 1814–1822. [Google Scholar] [CrossRef] - Huang, C.-H.; Wang, W.-J.; Chiu, C.-H. Design and implementation of fuzzy control on a two-wheel inverted pendulum. IEEE Trans. Ind. Electron.
**2011**, 58, 2988–3001. [Google Scholar] [CrossRef] - Nagarajan, U.; Kantor, G.; Hollis, R. The ballbot: An omnidirectional balancing mobile robot. Int. J. Robot. Res.
**2014**, 33, 917–930. [Google Scholar] [CrossRef]

**Figure 4.**The system performance of the ball robot balance control at a fixed point: (

**a**) The positional trajectories along the X-axis; (

**b**) The positional trajectories along the Y-axis; (

**c**) The angular trajectories along the X-axis; (

**d**) The angular trajectories along the Y-axis; (

**e**) The movement of the BR on the X-Y plane; (

**f**) The angle of the BR on the X-Y plane.

**Figure 5.**The system performance of the BR with an external disturbance: (

**a**) The positional trajectories along the X-axis; (

**b**) The positional trajectories along the Y-axis; (

**c**) The angular trajectories along the X-axis; (

**d**) The angular trajectories along the Y-axis; (

**e**) The movement of the BR on the X-Y plane; (

**f**) The angle of the BR on the X-Y plane.

**Figure 7.**System responses: (

**a**) The inclination angles for the X-axis and the Y-axis; (

**b**) The positions for the X-axis and the Y-axis; (

**c**) The angle of the BR on the X-Y plane; (

**d**) The movement of the BR on the X-Y plane.

m_{ball} | 2.72 kg | l | 0.25 m |

m_{body} | 14.28 kg | g | 9.8 m/s^{2} |

J_{ball} | 0.0463 | r_{b} | 0.1085 m |

J_{body} | 1.756 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chiu, C.-H.; Peng, Y.-F. Design of Takagi-Sugeno Fuzzy Control Scheme for Real World System Control. *Sustainability* **2019**, *11*, 3855.
https://doi.org/10.3390/su11143855

**AMA Style**

Chiu C-H, Peng Y-F. Design of Takagi-Sugeno Fuzzy Control Scheme for Real World System Control. *Sustainability*. 2019; 11(14):3855.
https://doi.org/10.3390/su11143855

**Chicago/Turabian Style**

Chiu, Chih-Hui, and Ya-Fu Peng. 2019. "Design of Takagi-Sugeno Fuzzy Control Scheme for Real World System Control" *Sustainability* 11, no. 14: 3855.
https://doi.org/10.3390/su11143855