Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data Acquisiton
2.3. Land Cover Classification and Analysis
2.4. Results Validation
2.5. Assessing Population Dynamics
2.6. Population Dynamics and Land Cover Change
2.7. Forecasting Land Cover Change
3. Results
3.1. Land Cover Change in Mau Water Tower, 1986–2015
3.2. Implications of Observed Population Dynamics on the Land Cover Change
3.3. Forecast of Land Cover Change in Mau Water Tower to 2044
4. Discussion
4.1. Land Cover Change in Mau Water Tower
4.2. Population Growth and Mau Water Tower Land Cover Change
5. Conclusions
- (1)
- There was drastic change in land cover between 1986–2015 with forest declining rapidly and grassland taking over in most parts of Mau Water Tower. In this period, forest cover declined from 307,629 ha (73.36%) to 174,341 ha (41.57%) (net loss of 133,288 ha), while grassland increased from 48,959 ha (11.67%) to 192,310 ha (45.86%) (net loss of 143,351 ha). The change in cropland was less than 10,063 ha.
- (2)
- Massive forest cover loss occurred between 1986 and 1995.
- (3)
- There was rapid population increase in the counties bounding Mau Water Tower.
- (4)
- Decline in forest cover had a very strong, significant, negative relationship with rapid population increase between 1986 and 2015.
- (5)
- Based on a BAU scenario, the land cover is likely to change adversely. By 2044, forest cover will decline further to 41,057 ha (10%) and grassland will increase sharply to 335,657 ha (80%), while an estimated area of 38,856 ha (10%) will be covered by cropland. Further forecasts showed that the forest will be depleted by 2053.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duhamel, C. Land Use, Land Cover, Including Their Classification. Encylopedia of Life Support System 2012. Available online: https://pdfs.semanticscholar.org/b6d7/1aa8fa32db298ffcbb8556d14d35f9bbcc49.pdf (accessed on 16 April 2019).
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Miheretu, B.A.; Yimer, A.A. Land use/land cover changes and their environmental implications in the Gelana sub-watershed of northern highlands of Ethiopia. Environ. Syst. Res. 2018, 6, 7. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Al-doski, J.; Mansor, S.B.; Shafri, H.Z.M. Change detection process and techniques. Civ. Environ. Res. 2013, 3, 2365–2401. [Google Scholar]
- Paudel, B.; Zhang, Y.; Li, S.; Liu, L.; Wu, X.; Khanal, N.R. Review of studies on land use and land cover change in Nepal. J. Mt. Sci. 2016, 13, 643–660. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- de Sherbinin, A. Land-Use and Land-Cover Change, A CIESIN Thematic Guide; Center for International Earth Science Information Network, Columbia University: Palisades, NJ, USA, 2002. [Google Scholar]
- Bringezu, S.; Schütz, H.; Pengue, W.; O’Brien, M.; Garcia, F.; Sims, R.; Howarth, R.W.; Kauppi, L.; Swilling, M.; Herrick, J. Assessing Global Land Use: Balancing Consumption with Sustainable Supply; United Nations Environment Programme: Nairobi, Kenya, 2014. [Google Scholar]
- Marchant, R.; Richer, S.; Boles, O.; Capitani, C.; Courtney-Mustaphi, C.J.; Lane, P.; Prendergast, M.E.; Stump, D.; De Cort, G.; Kaplan, J.O. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth-Sci. Rev. 2018, 178, 322–378. [Google Scholar] [CrossRef]
- Tsujino, R.; Yumoto, T.; Kitamura, S.; Djamaluddin, I.; Darnaedi, D. History of forest loss and degradation in Indonesia. Land Use Policy 2016, 57, 335–347. [Google Scholar] [CrossRef]
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Lanz, B.; Dietz, S.; Swanson, T.M. The Expansion of Modern Agriculture and Global Biodiversity Decline. Ecol. Econ. 2018, 144, 260–277. [Google Scholar] [CrossRef]
- Jewitt, D.; Goodman, P.S.; Erasmus, B.F.; O’Connor, T.G.; Witkowski, E.T. Systematic land-cover change in KwaZulu-Natal, South Africa: Implications for biodiversity. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar]
- Cobbinah, P.B.; Erdiaw-Kwasie, M.O.; Amoateng, P. Rethinking sustainable development within the framework of poverty and urbanisation in developing countries. Environ. Dev. 2015, 13, 18–32. [Google Scholar] [CrossRef]
- Adams, S.; Opoku, E.E.O. Population Growth and Urbanization in Africa: Implications for the Environment. In Population Growth and Rapid Urbanization in the Developing World; IGI Global: Hershey, PA, USA, 2016; pp. 282–297. [Google Scholar]
- d’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Urgesa, A.A.; Abegaz, A.; Bahir, A.L.; Antille, D.L. Population growth and other factors affecting land-use and land-cover changes in north-eastern Wollega, Ethiopia. Trop. Agric. 2016, 93, 298–311. [Google Scholar]
- Vandercasteelen, J.; Beyene, S.T.; Minten, B.; Swinnen, J. Cities and agricultural transformation in Africa: Evidence from Ethiopia. World Dev. 2018, 105, 383–399. [Google Scholar] [CrossRef]
- Meiyappan, P.; Jain, A.K. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci. 2012, 6, 122–139. [Google Scholar] [CrossRef]
- Government of Kenya (GoK). Kenya Gazette Supplement Number 27. Legal Notice No. 27; Government Printer: Nairobi, Kenya, 2012.
- Kenya Water Towers Agency (KWTA). Kenya Water Towers Status Report; Kenya Water Towers Agency: Nairobi, Kenya, 2015.
- Wood, S.L.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144. [Google Scholar] [CrossRef]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Albertazzi, S.; Bini, V.; Lindon, A.; Trivellini, G. Relations of power driving tropical deforestation: A case study from the Mau Forest (Kenya). Belgeo. Revue belge de géographie 2018, 2. [Google Scholar] [CrossRef]
- Kundu, P.M.; Olang, L.O. Automated extraction of morphologic and hydrologic properties for River Njoro catchment in Eastern Mau, Kenya. AGSE 2011, 2008, 147. [Google Scholar]
- Olang, L.O.; Fürst, J. Effects of land cover change on flood peak discharges and runoff volumes: Model estimates for the Nyando River Basin, Kenya. Hydrol. Process. 2011, 25, 80–89. [Google Scholar] [CrossRef]
- Matano, A.-S.; Kanangire, C.K.; Anyona, D.N.; Abuom, P.O.; Gelder, F.B.; Dida, G.O.; Owuor, P.O.; Ofulla, A.V. Effects of land use change on land degradation reflected by soil properties along Mara River, Kenya and Tanzania. Open J. Soil Sci. 2015, 5, 20. [Google Scholar] [CrossRef]
- Kinyanjui, M.J. The Effect of Human Encroachment on Forest Cover, Composition and Structure in the Western Blocks of the Mau Forest Complex. Ph.D. Thesis, Egerton University, Nakuru, Kenya, 2009. Unpublished work. [Google Scholar]
- Boitt, M.K. Impacts of Mau Forest Catchment on the Great Rift Valley Lakes in Kenya. J. Geosci. Environ. Prot. 2016, 4, 137. [Google Scholar] [CrossRef]
- Bewernick, T. Mapping Forest Degradation in the Mau Forest Complex Using NDFI Time Series. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Nkako, F.; Lambrechts, C.; Gachanja, M.; Woodley, B. Maasai Mau Forest Status Report 2005; Ewaso Ngiro South Development Authority: Narok, Kenya, 2005.
- Olang, L.O.; Kundu, P.M. Land degradation of the Mau forest complex in Eastern Africa: A review for management and restoration planning. In Environmental Monitoring; IntechOpen: London, UK, 2011. [Google Scholar]
- Mutangah, J.G.; Mwangangi, O.M.; Mwaura, P.K. Mau Forest Complex Vegetation Survey; Centre for Biodiversity, National Museums of Kenya: Nairobi, Kenya, 1993. [Google Scholar]
- Were, K.O.; Dick, Ø.; Singh, B.R. Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin, Kenya. Appl. Geogr. 2013, 41, 75–86. [Google Scholar] [CrossRef]
- Baldyga, T.J.; Miller, S.N.; Driese, K.L.; Gichaba, C.M. Assessing land cover change in Kenya’s Mau Forest region using remotely sensed data. Afr. J. Ecol. 2008, 46, 46–54. [Google Scholar] [CrossRef]
- Miao, L.; Zhu, F.; Sun, Z.; Moore, J.; Cui, X. China’s land-use changes during the past 300 years: A historical perspective. Int. J. Environ. Res. Public Health 2016, 13, 847. [Google Scholar] [CrossRef]
- Alo, C.A.; Pontius Jr, R.G. Identifying systematic land-cover transitions using remote sensing and GIS: The fate of forests inside and outside protected areas of Southwestern Ghana. Environ. Plan. B Plan. Des. 2008, 35, 280–295. [Google Scholar] [CrossRef]
- Lepers, E.; Lambin, E.F.; Janetos, A.C.; DeFries, R.; Achard, F.; Ramankutty, N.; Scholes, R.J. A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience 2005, 55, 115–124. [Google Scholar] [CrossRef]
- Chrisphine, O.M.; Odhiambo, A.M.; Boitt, K.M. Assessment of hydrological impacts of Mau Forest, Kenya. Hydrol. Curr. Res. 2016, 7. [Google Scholar] [CrossRef]
- Kratz, C.A. Affecting Performance: Meaning, Movement, and Experience in Okiek Women’s Initiation; Wheatmark: Tucson, AZ, USA, 2010. [Google Scholar]
- Government of Kenya (GoK). Rehabilitation of the Mau Forest Ecosystem; A Project Concept prepared by the Interim Coordinating Secretariat, Office of the Prime Minister, on Behalf of the Government of Kenya; Government Printer: Nairobi, Kenya, 2009.
- Mati, B.M.; Mutie, S.; Gadain, H.; Home, P.; Mtalo, F. Impacts of land-use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lakes Reserv. Res. Manag. 2008, 13, 169–177. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 166, 78–90. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, Q.; Ren, L.; Chen, H.; Wang, K.; Peng, C. Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sens. Environ. 2018, 206, 391–402. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Fetene, A.; Hilker, T.; Yeshitela, K.; Prasse, R.; Cohen, W.; Yang, Z. Detecting trends in landuse and landcover change of Nech Sar National Park, Ethiopia. Environ. Manag. 2016, 57, 137–147. [Google Scholar] [CrossRef]
- Khorram, S.; Van Der Wiele, C.F.; Koch, F.H.; Nelson, S.A.; Potts, M.D. Principles of Applied Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Janssen, L.L.F.; Bakker, W.H.; Weir, M.J.C.; Gorte, B.G.H.; Pohl, C.; Woldai, T.; Horn, J.A.; Reeves, C.V. Principles of Remote Sensing: An Introductory Textbook; ITC Educational Textbook Series; ITC: Enschede, The Netherlands, 2000. [Google Scholar]
- Thomas, I.L.; Benning, V.M.; Ching, N.P. Classification of remotely sensed images. Geocarto Int. 1987, 2, 77. [Google Scholar] [CrossRef]
- Mackenzie, C.A.; Hartter, J. Demand and proximity: Drivers of illegal forest resource extraction. Oryx 2013, 47, 288–297. [Google Scholar] [CrossRef]
- Kenya National Bureau of Statistics (KNBS). 1979 Population Census-Analytical Report, 2nd ed.; Government Printer: Nairobi, Kenya, 1979.
- Kenya National Bureau of Statistics (KNBS). 1999 Population and Housing Census-Population Distribution by Administrative Units, 1st ed.; Government Printer: Nairobi, Kenya, 2001.
- Kenya National Bureau of Statistics (KNBS). 2009 Kenya Population and Housing Census-Population Distribution by Administrative Units; Government Printer: Nairobi, Kenya, 2010.
- Kenya National Bureau of Statistics (KNBS). 2009 Kenya Population and Housing Census-Population Distribution by Political Units; Government Printer: Nairobi, Kenya, 2010.
- Government of Kenya (GoK). Kenya Population Situation Analysis; Government Printer: Nairobi, Kenya, 2013.
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, Q.; Zhan, J.; He, S.; Lin, Y. Simulation on the dynamics of forest area changes in Northeast China. J. Geogr. Sci. 2010, 20, 495–509. [Google Scholar] [CrossRef]
- EIA US. Energy Information Administration “International Energy Outlook”; Report DOE/EIA-0484; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2010.
- Samie, A.; Deng, X.; Jia, S.; Chen, D. Scenario-based simulation on dynamics of land-use-land-cover change in Punjab Province, Pakistan. Sustainability 2017, 9, 1285. [Google Scholar] [CrossRef]
- Puyravaud, J.-P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 2003, 177, 593–596. [Google Scholar] [CrossRef]
- Murcia, C.; Guariguata, M.R.; Andrade, Á.; Andrade, G.I.; Aronson, J.; Escobar, E.M.; Etter, A.; Moreno, F.H.; Ramírez, W.; Montes, E. Challenges and prospects for scaling-up ecological restoration to meet international commitments: Colombia as a case study. Conserv. Lett. 2016, 9, 213–220. [Google Scholar] [CrossRef]
- Evans, K.; Guariguata, M.R.; Brancalion, P.H. Participatory monitoring to connect local and global priorities for forest restoration. Conserv. Biol. 2018, 32, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Popradit, A.; Srisatit, T.; Kiratiprayoon, S.; Yoshimura, J.; Ishida, A.; Shiyomi, M.; Murayama, T.; Chantaranothai, P.; Outtaranakorn, S.; Phromma, I. Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep. 2015, 5, 14689. [Google Scholar] [CrossRef] [Green Version]
- Recha, C.W. Local and Regional Variations in Conditions for Agriculture and Food Security in Kenya; AgriFoSe2030 Report 7; Lund University, Sweden Egerton University: Njoro, Kenya, 2018. [Google Scholar]
- Government of Kenya (GoK). Report of the Prime Minister’s Task Force on the Conservation of the Mau Forest Complex; Government Printer: Nairobi, Kenya, 2009.
- Kimaiyo, J.T. Ogiek Land Cases and Historical Injustices; Ogiek Welfare Council: Nakuru, Kenya, 2004. [Google Scholar]
- Otuoma, J.; Langat, D.; Maina, J.; Maina, G.; Maina, J.; Mwanje, P. Effects of Watershed Degradation on Hydrological Functions in the Sondu River Catchment 2012. Available online: https://www.academia.edu/37661780/Effect_of_Watershed_Degradation_on_Hydrological_Functions_in_the_Sondu_River_Catchment (accessed on 22 April 2019).
- Standing, A.; Gachanja, M. The Political Economy of REDD+ in Kenya: Identifying and Responding to Corruption Challenges; U4 Issue; Chr. Michelsen Institute: Bergen, Norway, 2014. [Google Scholar]
- Naughton, L.; Alix-Garcia, J.; Chapman, C.A. A decade of forest loss and economic growth around Kibale National Park, Uganda: Lessons for poverty reduction and biodiversity conservation. Proc. Natl. Acad. Sci. USA 2011, 108, 13919–13924. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Government of Kenya (GoK). Sessional Paper No 3 of 2009 on National Land Policy 2009; Government Printer: Nairobi, Kenya, 2009.
- Mwangi, H.; Lariu, P.; Julich, S.; Patil, S.; McDonald, M.; Feger, K.-H. Characterizing the intensity and dynamics of land-use change in the Mara River Basin, East Africa. Forests 2017, 9, 8. [Google Scholar] [CrossRef]
- Mather, A.S.; Needle, C.L. The relationships of population and forest trends. Geogr. J. 2000, 166, 2–13. [Google Scholar] [CrossRef]
- Rosero-Bixby, L.; Palloni, A. Population and deforestation in Costa Rica. Popul. Environ. 1998, 20, 149–185. [Google Scholar] [CrossRef]
- Carr, D.L. Population Soil Use and Deforestation in the Sierra de Lacandón National Park Petén Guatemala; University of Costa Rica: San José, Costa Rica, 2001. [Google Scholar]
- Henry, M.; Picard, N.; Trotta, C.; Manlay, R.; Valentini, R.; Bernoux, M.; Saint André, L. Estimating tree biomass of sub-Saharan African forests: A review of available allometric equations. Silva Fenn. 2011, 45, 477–569. [Google Scholar] [CrossRef]
- Recha, J.W.; Lehmann, J.; Walter, M.T.; Pell, A.; Verchot, L.; Johnson, M. Stream discharge in tropical headwater catchments as a result of forest clearing and soil degradation. Earth Interact. 2012, 16, 1–18. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Komu, M.D.; Edward, A.; Ethelberg, S.N. Family planning and population control in developing countries: Ethical and sociocultural dilemmas. Online J. Health Ethics 2015, 11, 6. [Google Scholar] [CrossRef]
- Büscher, B. Anti-politics as political strategy: Neoliberalism and transfrontier conservation in southern Africa. Dev. Chang. 2010, 41, 29–51. [Google Scholar] [CrossRef]
- Lindsey, P.A.; Masterson, C.L.; Beck, A.L.; Romañach, S. Ecological, social and financial issues related to fencing as a conservation tool in Africa. In Fencing for Conservation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 215–234. [Google Scholar]
- Kesch, M.K.; Bauer, D.T.; Loveridge, A.J. Break on through to the other side: The effectiveness of game fencing to mitigate human—Wildlife conflict. Afr. J. Wildl. Res. 2015, 45, 76–88. [Google Scholar] [CrossRef]
- Gunnigan, L.; Rajput, R. Comparison of Indian PPP construction industry and European PPP construction industry: Process, thresholds and implementation. In Proceedings of the CIB World Congress 2010, Salford, UK, 1 January 2010. [Google Scholar]
- Liyanage, C.; Villalba-Romero, F. Measuring success of PPP transport projects: A cross-case analysis of toll roads. Transp. Rev. 2015, 35, 140–161. [Google Scholar] [CrossRef]
- Villalba-Romero, F.; Liyanage, C.; Roumboutsos, A. Sustainable PPPs: A comparative approach for road infrastructure. Case Stud. Transp. Policy 2015, 3, 243–250. [Google Scholar] [CrossRef]
- Bjärstig, T. Does Collaboration Lead to Sustainability? A Study of Public–Private Partnerships in the Swedish Mountains. Sustainability 2017, 9, 1685. [Google Scholar] [CrossRef]
- Wojewnik-Filipkowska, A.; Węgrzyn, J. Understanding of Public–Private Partnership Stakeholders as a Condition of Sustainable Development. Sustainability 2019, 11, 1194. [Google Scholar] [CrossRef]
Satellite Image | Date | Landsat Sensor | Path/Row |
---|---|---|---|
Landsat-5 | 28 January 1986 | TM | 169/60 |
Landsat-5 | 28 January 1986 | TM | 169/61 |
Landsat-5 | 6 February 1995 | TM | 169/60 |
Landsat-5 | 22 February 1995 | TM | 169/61 |
Landsat-8 | 5 June 2015 | OLI | 169/60 |
Landsat-8 | 23 July 2015 | OLI | 169/61 |
Landsat-5 | |||
Spectral Response | Wavelength Interval (µm) | Usage | Resolution (m) |
Band 2—Green | 0.52–0.60 | Emphasizes peak vegetation which is useful for assessing plant vigor | 30 |
Band 3—Red | 0.63–0.69 | Discriminates vegetation slopes | 30 |
Band 4—Near Infrared | 0.77–0.90 | Emphasizes biomass content and shorelines | 30 |
Landsat-8 | |||
Band 3—Green | 0.53–0.59 | Emphasizes peak vegetation which is useful for assessing plant vigor | 30 |
Band 4—Red | 0.64–0.67 | Discriminates vegetation slopes | 30 |
Band 5—Near Infrared | 0.85–0.88 | Emphasizes biomass content and shorelines | 30 |
Cover Type | Description |
---|---|
Forest | Areas characterized by densely forested areas both closed and open forest. |
Cropland | Agricultural land, including old and new cultivated lands, fallow land. |
Grassland | Areas dominated by grasses, small shrubs or thickets rather than large shrubs or trees. |
County | District |
---|---|
Kericho | Sotik, Buret, Bomet 1, Kericho and Kipkelion |
Narok | Narok South, Narok North and Transmara |
Nakuru | Nakuru, Nakuru North, Naivasha and Molo |
Nandi | Nandi Central, Nandi North, Nandi East, Nandi South and Tinderet |
Uasin Gishu | East Pokot, Koibatek, Eldoret West, Eldoret East and Wareng |
Land Cover Type | 1986 | 1995 | 2015 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Forest | 307,629 | 73.36 | 195,832 | 46.70 | 174,341 | 41.57 |
Cropland | 62,779 | 14.97 | 50,626 | 12.07 | 52,716 | 12.57 |
Grassland | 48,959 | 11.67 | 172,909 | 41.23 | 192,310 | 45.86 |
Total | 419,367 | 100 | 419,367 | 100 | 419,367 | 100 |
Transition | Change (ha) | ||
---|---|---|---|
1986 to 1995 | 1995 to 2015 | 1986 to 2015 | |
Forest to Cropland | 6949.44 | 18,123.28 | 27,332.22 |
Forest to Grassland | 123,275.81 | 54,790.71 | 138,626.29 |
Cropland to Forest | 14,534.88 | 8557.65 | 18,790.65 |
Cropland to Grassland | 22,769.27 | 20,455.65 | 20,610.03 |
Grassland to Forest | 2585.48 | 43,607.03 | 6981.36 |
Grassland to Cropland | 19,300.92 | 13,215.54 | 7477.51 |
No Change | 229,879.87 | 261,155.67 | 204,585.09 |
Land Cover Type | 1986 | 1995 | 2015 | |||
---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Forest | 110,088 | 26.48 | 94,874 | 22.82 | 85,860 | 20.64 |
Cropland | 181,405 | 43.62 | 201,124 | 48.37 | 170,868 | 41.10 |
Grassland | 124,309 | 29.90 | 119,804 | 28.81 | 159,074 | 38.26 |
Total | 415,802 | 100 | 415,802 | 100 | 415,802 | 100 |
Transition | Change (ha) | ||
---|---|---|---|
1986 to 1995 | 1995 to 2015 | 1986 to 2015 | |
Forest to Cropland | 10,845.84 | 20,033.23 | 21,006.21 |
Forest to Grassland | 38,699.73 | 15,773.81 | 31,814.04 |
Cropland to Forest | 28,239.88 | 38,962.94 | 51,237.95 |
Cropland to Grassland | 38,275.08 | 50,790.26 | 38,733.47 |
Grassland to Forest | 3892.55 | 29,768.13 | 18,336.71 |
Grassland to Cropland | 78,024.65 | 38,604.29 | 45,252.26 |
No Change | 204,990.33 | 221,869.18 | 195,953.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odawa, S.; Seo, Y. Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya. Sustainability 2019, 11, 3524. https://doi.org/10.3390/su11133524
Odawa S, Seo Y. Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya. Sustainability. 2019; 11(13):3524. https://doi.org/10.3390/su11133524
Chicago/Turabian StyleOdawa, Simon, and Yongwon Seo. 2019. "Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya" Sustainability 11, no. 13: 3524. https://doi.org/10.3390/su11133524
APA StyleOdawa, S., & Seo, Y. (2019). Water Tower Ecosystems under the Influence of Land Cover Change and Population Growth: Focus on Mau Water Tower in Kenya. Sustainability, 11(13), 3524. https://doi.org/10.3390/su11133524