Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Material and Experimental Design Approach
2.2.1. Fertilizer Treatments
2.2.2. Humic Acid
2.2.3. PGPR Strain Culture Conditions
2.3. Experimental Protocol
2.4. Field and Laboratory Measurements
2.4.1. Physical Quality Analysis
2.4.2. Chemical Quality Analysis
2.5. Data Analysis
3. Results
3.1. The Growth and Tuber Yield
3.2. The Tuber Quality and Mineral Contents
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. The State of Food Insecurity in the World 2019: Strengthening the Enabling Environment for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org (accessed on 2 January 2019).
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The Use of Biostimulants for Enhancing Nutrient Uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1–3. [Google Scholar] [CrossRef]
- Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; McLaughlin, N.B.; Mi, J.; Chen, Q.; Liu, J. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Tillage Res. 2015, 148, 31–39. [Google Scholar] [CrossRef]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Tuber growth and quality of potato (Solanum tuberosum L.) as affected by foliar or soil application of fulvic and humic acids. Hortic. Environ. Biotechnol. 2014, 55, 183–189. [Google Scholar] [CrossRef]
- Olivares, F.L.; Aguiar, N.O.; Rosa, R.C.C.; Canellas, L.P. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic. 2015, 183, 100–108. [Google Scholar] [CrossRef]
- Canellas, L.P.; Balmori, D.M.; Médici, L.O.; Aguiar, N.O.; Campostrini, E.; Rosa, R.C.C.; Façanha, A.R.; Olivares, F.L. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant Soil 2013, 366, 119–132. [Google Scholar] [CrossRef]
- Esringü, A.; Kaynar, D.; Turan, M.; Ercisli, S. Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Commun. Soil Sci. Plant Anal. 2016, 47, 602–618. [Google Scholar] [CrossRef]
- Schoebitz, M.; López, M.D.; Serrí, H.; Martínez, O.; Zagal, E. Combined application of microbial consortium and humic substances to improve the growth performance of blueberry seedlings. J. Soil Sci. Plant Nutr. 2016, 16, 1010–1023. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Bashan, Y.; De Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; de Paula, A.M.; Lima, L.S.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 30. [Google Scholar] [CrossRef]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; ICARDA: Aleppo, Syria, 2012; ISBN1 10-8172337655. ISBN2 13-978-8172337650. [Google Scholar]
- Bouyoucos, G.S. Recalibration of the hydrometer methods for making mechanical analysis of soil. Agronomy J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement Saline and Alkaline Soils; United States Department of Agriculture: Washington, DC, USA, 1954; p. 60.
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part II. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., KeeneyAgronomy, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis, Part III; Bartels, J.M., Bigham, J.M., Eds.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA, U.S. Government Printing Office: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Organic matter. In Methods of Soil Analysis Part II. Chemical and Microbiological Properties, 2nd ed.; Norman, A.G., Ed.; Agronomy: Madison, WI, USA, 1982; pp. 574–579. [Google Scholar]
- Thomas, G.W. Exchangable cations. In Methods of Soil Analysis, Part II, Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Çakmakçi, R.; Kantar, F.; Sahin, F. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci. 2001, 164, 527–531. [Google Scholar] [CrossRef]
- Orhan, E.; Esitken, A.; Ercisli, S.; Turan, M.; Fikrettin, S. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hort. 2006, 111, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Çakmakçi, R.; Dönmez, F.; Aydin, A.; Sahin, F. Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006, 38, 1482–1487. [Google Scholar] [CrossRef]
- Högy, P.; Fangmeier, A. Atmospheric CO2 enrichment affects potatoes: 2. Tuber quality traits. Eur. J. Agron. 2009, 30, 85–94. [Google Scholar] [CrossRef]
- Esendal, E. Potato; University of Ondokuz Mayis, Faculty of Agriculture: Samsun, Turkey, 1990; p. 221. ISBN 975-7636-06-1. [Google Scholar]
- Edgar, A.D. Determining the specific gravity of individual potatoes. Am. Potato J. 1951, 28, 729–731. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Rosas, S.B.; Avanzin, G.; Carlier, E.; Pasluosta, C.; Pastor, N.; Rovera, M. Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol. Biochem. 2009, 41, 1802–1806. [Google Scholar] [CrossRef]
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Silva, S.F.; Olivares, F.L.; Canellas, L.P. The biostimulant manufactured using diazotrophic endophytic bacteria and humates is effective to increase sugarcane yield. Chem. Biol. Technol. Agric. 2017, 4, 24. [Google Scholar] [CrossRef]
- Shahid, M.; Hameed, S.; Imran, A.; Ali, S.; Elsas, J.D. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J. Microbiol. Biotechnol. 2012, 28, 2749–2758. [Google Scholar] [CrossRef]
- Lucas, J.A.; Ramos Solano, B.; Montes, F.; Ojeda, J.; Megias, M.; Gutierrez Mañero, F.J. Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa L.) in Southern Spain. Field Crop. Res. 2009, 114, 404–410. [Google Scholar] [CrossRef]
- Hoyos-Carvajal, L.; Orduz, S.; Bissett, J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control 2009, 51, 409–416. [Google Scholar] [CrossRef]
- El-Howeity, M.A.; Asfour, M.M. Response of some varieties of canola plant (Brassica napus L.) cultivated in a newly reclaimed desert to plant growth promoting rhizobacteria and mineral nitrogen fertilizer. Ann. Agric. Sci. 2012, 57, 129–136. [Google Scholar] [CrossRef]
- Thonar, C.; Lekfeldt, J.D.S.; Cozzolino, V.; Kundel, D.; Kulhánek, M.; Mosimann, C.; Neumann, G.; Piccolo, A.; Symanczik, S.; Walder, F. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem. Biol. Technol. Agric. 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Cassán, F.; Perrig, D.; Sgroy, V.; Masciarelli, O.; Penna, C.; Luna, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 2009, 45, 28–35. [Google Scholar] [CrossRef]
- Hanif, M.K.; Hameed, S.; Imran, A.; Naqqash, T.; Shahid, M.; Van Elsas, J.D. Isolation and characterization of a b-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Front. Microbiol. 2015, 6, 583. [Google Scholar] [CrossRef]
- Naqqash, T.; Hameed, S.; Imran, A.; Hanif, M.K.; Majeed, A.; Van Elsas, J.K. Differential Response of Potato Toward Inoculation with Taxonomically Diverse Plant Growth Promoting Rhizobacteria. Front. Plant Sci. 2016, 7, 144. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.T.; Hamza, M.A.; Youssef, H.H.; Fayez, M.; Monib, M.; Heqazi, N.A. Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: Five years of field trials. J. Adv. Res. 2013, 5, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Andreote, F.D.; De Araújo, W.L.; De Azevedo, J.L.; Van Elsas, J.D.; Da Rocha, U.N.; Van Overbeek, L.S. Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and its effect on associated bacterial communities. Appl. Environ. Microbiol. 2009, 75, 3396–3406. [Google Scholar] [CrossRef]
- Calvo, P.; Ormeño-Orrillo, E.; Martínez-Romero, E.; Zúñiga, D. Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Braz. J. Microbiol. 2010, 41, 899–906. [Google Scholar] [CrossRef]
- Ghyselinck, J.; Velivelli, S.L.; Heylen, K.; O’Herlihy, E.; Franco, J.; Rojas, M.; De Vos, P.; Prestwich, B.D. Bioprospecting in potato fields in the central Andean highlands: Screening of Rhizobacteria for plant growth promoting properties. Syst. Appl. Microbiol. 2013, 36, 116–127. [Google Scholar] [CrossRef]
- Pishchik, V.N.; Vorobyov, N.I.; Walsh, O.S.; Surin, V.G.; Khomyakov, Y.V. Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. J. Plant Nutr. 2016, 39, 1074–1086. [Google Scholar] [CrossRef]
- Jha, C.K.; Saraf, M. Evaluation of multispecies plant-growth promoting consortia for the growth promotion of Jatropha curcas L. J. Plant Growth Regul. 2012, 31, 588–598. [Google Scholar] [CrossRef]
- Yolcu, H.; Gunes, A.; Gullap, M.K.; Cakmakci, R. Effects of plant growth-promoting rhizobacteria on some morphologic characteristics yield and quality contents of Hungarian Vetch. Turk. J. Field Crop. 2012, 17, 208–214. [Google Scholar]
- Selim, E.M.; El-Neklawy, S.A.S.; El-Ashry, M. Beneficial effects of humic substances fertigation on soil fertility to potato grown on sandy soil. Aust. J. Basic Appl. Sci. 2009, 3, 4351–4358. [Google Scholar]
- Schmidt, W.; Santi, S.; Pinton, R.; Varanini, Z. Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil 2007, 300, 259–267. [Google Scholar] [CrossRef]
- Chi, F.; Shen, S.H.; Cheng, H.P.; Jing, Y.X.; Yanni, Y.; Dazzo, F.B. Ascending migration of endophytic rhizobia from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 2005, 71, 7271–7277. [Google Scholar] [CrossRef]
- Baldotto, L.E.B.; Baldotto, M.A.; Canellas, L.P.; Bressan-Smith, R.; Olivares, F.L. Growth promotion of pineapple ‘vitória’ by humic acids and Burkholderia spp. during acclimatization. Rev. Bras. Cienc. Solo 2010, 34, 1593–1600. [Google Scholar] [CrossRef]
Month | Mean Air Temperature (°C) | Precipitation (mm) | Relative Humidity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | LTA | 2010 | 2011 | LTA | 2010 | 2011 | LTA | |
May | 11.4 | 11.2 | 13.1 | 106.2 | 90.0 | 70.2 | 65.8 | 69.1 | 65.0 |
June | 18.3 | 17.6 | 18.9 | 28.0 | 15.6 | 28.7 | 50.4 | 52.1 | 55.6 |
July | 22.8 | 22.3 | 21.5 | 1.8 | 3.2 | 8.3 | 37.3 | 41.3 | 49.4 |
August | 22.5 | 22.0 | 22.8 | 0.6 | 1.6 | 5.7 | 35.6 | 40.4 | 47.7 |
September | 19.3 | 17.2 | 17.6 | 2.4 | 3.2 | 8.1 | 43.1 | 46.3 | 51.1 |
October | 12.3 | 9.3 | 12.0 | 26.6 | 27.0 | 60.5 | 62.6 | 63.6 | 63.7 |
Season(M/T) * | 17.7 | 16.6 | 17.7 | 165.6 | 140.6 | 181.5 | 49.1 | 52.1 | 55.4 |
Yearly(M/T) | 10.9 | 8.6 | 9.3 | 399.0 | 566.6 | 562.6 | 59.6 | 56.4 | 63.8 |
Feature | Units | Value |
---|---|---|
Clay | % | 47.2 |
Silt | % | 36.8 |
Sand | % | 16.0 |
Electric conductivity | dS m−1 | 1.16 |
pH (1:2 soil:water) | 7.48 | |
CaCO3 | % | 6.8 |
Organic matter | % | 1.59 |
Organic C | % | 2.83 |
Total N | g kg−1 | 0.15 |
Plant available P | mg kg−1 | 7.95 |
Available K | mg kg−1 | 196 |
Available Mn | mg kg−1 | 3.30 |
Available Zn | mg kg−1 | 1.44 |
Available Fe | mg kg−1 | 5.85 |
Available Cu | mg kg−1 | 0.59 |
Plant Height (cm) | No. of Stems (per plant) | No. of Tubers (per plant) | Tuber Weight (g) | Tuber Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|---|
Unmarketable (<35 mm) | Marketable (35–50 mm) | Industrial (>50 mm) | Total | |||||
Control | 36.8 k * | 2.5 i | 9.9 hi | 60.7 j | 2.2 gh | 11.7 hg | 14.2 l | 28.3 k |
NPK 50% | 57.6 c | 4.5 b | 11.1 ef | 80.0 h | 3.2 bc | 12.7 g | 25.7 h | 41.5 h |
NPK 100% | 60.5 b | 5.2 a | 14.3 a | 100.3 e | 2.7 ef | 17.3 c | 40.0 e | 59.9 c |
M3 | 42.6 j | 3.0 h | 9.8 i | 82.6 gh | 2.1 h | 7.5 j | 28.6 g | 38.2 i |
OSU | 44.4 ij | 3.3 gh | 10.5 hg | 95.7 f | 2.2 gh | 11.0 h | 39.8 e | 52.6 f |
M3OSU | 44.6 ij | 3.4 efg | 10.6 fg | 106.9 d | 2.1 h | 9.2 i | 42.8 d | 54.7 e |
HA200 | 47.0 h | 3.3 gh | 11.3 e | 66.5 i | 1.1 j | 14.2 f | 16.8 k | 32.1 j |
HA400 | 50.6 fg | 3.7 def | 11.9 cd | 80.4 h | 1.7 i | 19.8 b | 19.3 j | 40.7 h |
HA600 | 53.8 d | 4.5 b | 12.3 c | 85.5 g | 3.6 a | 23.3 a | 22.9 i | 49.7 g |
M3H200 | 44.8 i | 3.4 efg | 11.3 e | 100.0 e | 3.3 b | 9.5 i | 35.2 f | 48.0 g |
M3H400 | 48.8gh | 3.7 def | 13.7 b | 95.5 f | 3.6 a | 16.9 c | 35.5 f | 56.0 de |
M3H600 | 56.7 c | 3.8 de | 13.6 b | 95.7 f | 2.8 de | 14.5 ef | 38.4 e | 57.3 d |
OSUH200 | 51.3 ef | 3.6 efg | 12.0 cd | 107.3 d | 2.7 ef | 12.8 g | 42.6 d | 58.0 cd |
OSUH400 | 52.7 de | 4.0 cd | 13.5 b | 117.3 c | 2.5 gh | 15.7 de | 46.2 c | 64.4 b |
OSUH600 | 61.4 ab | 4.6 b | 13.2 b | 115.7 c | 2.9 de | 12.8 g | 50.8 b | 66.5 a |
M3OSUH200 | 52.6 de | 3.7 de | 11.9 cd | 115.2 c | 2.1 h | 16.6 cd | 44.1 d | 62.8 b |
M3OSUH400 | 63.2 a | 4.6 b | 11.4 de | 132.8 a | 3.0 cd | 9.00 i | 56.0 a | 68.0 a |
M3OSUH600 | 61.7 ab | 4.3 bc | 12.4 c | 124.7 b | 2.7 ef | 14.9 ef | 50.1 b | 68.0 a |
Tuber Size | Tuber Shape | Specific Gravity (g cm3) | Dry Matter (%) | Starch (%) | Protein (%) | |||
---|---|---|---|---|---|---|---|---|
Width (mm) | Length (mm) | Index Value | Shape | |||||
Control | 49.1 j * | 61.8 e | 125.9 | Short-Oval | 1.067 l | 16.9 l | 11.4 k | 7.4 i |
NPK 50% | 56.2 h | 70.3 d | 125.1 | Short-Oval | 1.069 k | 17.3 k | 11.8 j | 8.8 gh |
NPK 100% | 57.0 gh | 79.9 abc | 140.2 | Oval | 1.078 d | 19.2 cd | 13.2 ef | 9.7 e |
M3 | 56.3 h | 70.0 d | 124.3 | Short-Oval | 1.071 i | 17.8 i | 12.2 i | 9.0 f |
OSU | 58.5 fgh | 78.1 abc | 133.5 | Oval | 1.075 g | 18.6 g | 12.9 g | 9.8 e |
M3OSU | 60.3 def | 79.5 abc | 131.8 | Oval | 1.076 f | 18.9 f | 13.1 f | 10.1 d |
HA200 | 49.7 ij | 63.0 e | 126.8 | Short-Oval | 1.069 k | 17.4 j | 11.9 j | 8.7 h |
HA400 | 51.6 i | 64.3 e | 124.6 | Short-Oval | 1.073 h | 18.2 h | 12.5 h | 8.9 fg |
HA600 | 51.8 i | 64.4 e | 124.3 | Short-Oval | 1.077 de | 18.9 ef | 13.2 ef | 9.7 e |
M3H200 | 67.7 a | 75.0 cd | 110.8 | Short-Oval | 1.073 h | 18.2 h | 12.5 h | 9.8 e |
M3H400 | 62.4 bcd | 76.1 c | 122.0 | Short-Oval | 1.075 g | 18.6 g | 12.9 g | 10.7 c |
M3H600 | 62.9 bc | 77.1 bc | 122.6 | Short-Oval | 1.078 d | 19.2 cd | 13.4 d | 11.0 b |
OSUH200 | 59.7 ef | 78.1 abc | 130.8 | Oval | 1.075 g | 18.6 g | 12.9 g | 10.7 c |
OSUH400 | 61.3 cde | 82.3 ab | 134.3 | Oval | 1.076 f | 18.9 ef | 13.5 cd | 11.0 b |
OSUH600 | 60.2 def | 79.3 abc | 131.7 | Oval | 1.079 c | 19.3 c | 13.6 c | 11.4 a |
M3OSUH200 | 63.9 b | 77.9 abc | 121.9 | Short-Oval | 1.077 de | 19.1 de | 13.3 de | 10.7 c |
M3OSUH400 | 59.7 ef | 83.5 a | 140.1 | Oval | 1.081 a | 20.0 a | 14.2 a | 11.0 b |
M3OSUH600 | 59.0 efg | 83.3 a | 141.5 | Oval | 1.080 b | 19.6 b | 13.8 b | 11.1 b |
P (g/kg) | K (g/kg) | Ca (g/kg) | Mg (g/kg) | Fe (mg/kg) | Zn (mg/kg) | Cu (mg/kg) | Mn (mg/kg) | |
---|---|---|---|---|---|---|---|---|
Control | 1.62 j * | 17.60 h | 0.73 j | 1.06 k | 60.85 k | 11.94 k | 4.50 b | 6.20 i |
NPK 50% | 1.91 i | 18.91 g | 0.88 i | 1.34 i | 64.45 k | 16.32 fg | 4.67 a | 7.08 h |
NPK 100% | 2.76 c | 22.52 c | 1.25 d | 1.70 c | 98.35 d | 16.25 fg | 4.73 a | 9.34 cd |
M3 | 2.47 f | 19.43 fg | 1.09 f | 1.32 i | 76.29 i | 14.60 ij | 3.94 d | 7.16 h |
OSU | 2.37 gh | 20.25 ef | 0.97 h | 1.44 h | 91.26 f | 15.54 gh | 3.70 f | 7.68 fgh |
M3OSU | 2.65 de | 22.37 c | 0.97 h | 1.68 d | 99.91 d | 17.02 ef | 3.40 h | 8.44 ef |
HA200 | 1.92 i | 17.60 h | 0.89 i | 1.30 j | 71.40 j | 15.20 hi | 4.19 c | 7.39 gh |
HA400 | 2.36 h | 21.03 de | 1.10 f | 1.35 i | 81.40 g | 14.41 j | 3.87 de | 7.98 efg |
HA600 | 2.68 cde | 22.52 c | 1.17 e | 1.65 e | 91.16 f | 13.99 j | 3.58 g | 8.36 ef |
M3H200 | 2.69 cd | 19.97 f | 1.28 c | 1.44 h | 78.81 h | 15.78 gh | 3.80 e | 7.30 gh |
M3H400 | 2.76 c | 21.03 de | 1.31 c | 1.52 g | 92.97 f | 16.95 ef | 3.69 f | 8.75 de |
M3H600 | 2.85 b | 21.78 cd | 1.66 a | 1.53 g | 104.68 c | 17.84 d | 3.53 g | 9.51 c |
OSUH200 | 2.45 fg | 21.70 cd | 1.02 g | 1.51 g | 95.69 e | 16.99 ef | 3.57 g | 8.58 e |
OSUH400 | 2.52 f | 22.05 c | 1.19 e | 1.59 f | 104.27 c | 18.25 cd | 3.38 h | 9.54 c |
OSUH600 | 2.61 e | 24.53 b | 1.31 c | 1.58 f | 109.99 c | 18.92 bc | 3.31 hi | 10.68 b |
M3OSUH200 | 2.76 c | 23.85 b | 1.07 f | 1.73 c | 103.01 c | 17.72 de | 3.25 ij | 9.61 c |
M3OSUH400 | 2.86 b | 25.90 a | 1.18 e | 1.79 b | 112.02 b | 19.27 b | 3.24 ij | 11.64 a |
M3OSUH600 | 2.95 a | 26.60 a | 1.54 b | 1.90 a | 115.73 a | 20.23 a | 3.16 j | 11.88 a |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekin, Z. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability 2019, 11, 3417. https://doi.org/10.3390/su11123417
Ekin Z. Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability. 2019; 11(12):3417. https://doi.org/10.3390/su11123417
Chicago/Turabian StyleEkin, Zehra. 2019. "Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture" Sustainability 11, no. 12: 3417. https://doi.org/10.3390/su11123417
APA StyleEkin, Z. (2019). Integrated Use of Humic Acid and Plant Growth Promoting Rhizobacteria to Ensure Higher Potato Productivity in Sustainable Agriculture. Sustainability, 11(12), 3417. https://doi.org/10.3390/su11123417