A Text Mining Approach for Sustainable Performance in the Film Industry
Abstract
:1. Introduction
2. Background and Hypothesis Development
2.1. Prior Studies on Electronic Word of Mouth
2.2. User Reviews and Sustainable Box Office Revenue
2.3. Third-Party Product Reviews and Box Office Revenue
2.4. Prior Studies on Cultural Elements
3. Methodology
3.1. Research Design
3.2. Sample Selection
3.3. Measurement
4. Data Analysis and Result
4.1. Data Analysis
+ b6L_USTi,r1 * RGOr1 + b7L_CSTi,r1 * RGOr1
+ b8STRi + b9COPi + b10L_SCRi,r1 + b11GRi + b12MPAi + εi,r1
+ b6L_USTi,r2* RGOr2 + b7L_CSTi,r2 * RGOr2
+ b8STRi + b9COPi + b10L_SCRi,r2 + b11GRi + b12MPAi + εi,r2
4.2. Phase 1: Ratings vs. Reviews
4.3. Phase 2: Comparing the Moderating Effects of Regions and Countries
4.4. Miscellaneous Concerns: Standard Deviation of User Sentiment and Individualism
5. Discussion
5.1. Theoretical and Practical Implications
5.2. Limitations and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Minton, E.; Lee, C.; Orth, U.; Kim, C.-H.; Kahle, L. Sustainable marketing and social media: A cross-country analysis of motives for sustainable behaviors. J. Advert. 2012, 41, 69–84. [Google Scholar] [CrossRef]
- Saura, J.; Reyes-Menendez, A.; Alvarez-Alonso, C. Do online comments affect environmental management? Identifying factors related to environmental management and sustainability of hotels. Sustainability 2018, 10, 3016. [Google Scholar] [CrossRef]
- Saura, J.R.; Palos-Sánchez, P.; Cerdá Suárez, L.M. Understanding the digital marketing environment with KPIs and web analytics. Future Internet 2017, 9, 76. [Google Scholar] [CrossRef]
- Schumann, J.H.; Wangenheim, F.; Stringfellow, A.; Yang, Z.; Blazevic, V.; Praxmarer, S.; Shainesh, G.; Komor, M.; Shannon, R.M.; Jiménez, F.R. Cross-Cultural Differences in the Effect of Received Word-of-Mouth Referral in Relational Service Exchange. J. Int. Mark. 2010, 18, 62–80. [Google Scholar] [CrossRef] [Green Version]
- Trusov, M.; Bucklin, R.E.; Pauwels, K. Effects of Word-of-Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site. J. Mark. 2009, 73, 90–102. [Google Scholar] [CrossRef]
- Dellarocas, C. The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms. Manag. Sci. 2003, 49, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Anastasiei, B.; Dospinescu, N. Electronic Word-of-Mouth for Online Retailers: Predictors of Volume and Valence. Sustainability 2019, 11, 814. [Google Scholar] [CrossRef]
- Chevalier, J.A.; Mayzlin, D. The effect of word of mouth on sales: Online book reviews. J. Mark. Res. 2006, 43, 345–354. [Google Scholar] [CrossRef]
- Li, X.; Hitt, L.M. Self-Selection and Information Role of Online Product Reviews. Inf. Syst. Res. 2008, 19, 456–474. [Google Scholar] [CrossRef] [Green Version]
- Dellarocas, C.; Gao, G.; Narayan, R. Are Consumers More Likely to Contribute Online Reviews for Hit or Niche Products? J. Manag. Inf. Syst. 2010, 27, 127–157. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zhang, J. When Do Third-Party Product Reviews Affect Firm Value and What Can Firms Do? The Case of Media Critics and Professional Movie Reviews. J. Mark. 2012, 76, 116–134. [Google Scholar] [CrossRef]
- Eliashberg, J.; Shugan, S.M. Film critics: Influencers or predictors? J. Mark. 1997, 61, 68. [Google Scholar] [CrossRef]
- Liu, Y. Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue. J. Mark. 2006, 70, 74–89. [Google Scholar] [CrossRef]
- Godes, D.; Mayzlin, D. Using Online Conversations to Study Word-of-Mouth Communication. Mark. Sci. 2004, 23, 545–560. [Google Scholar] [CrossRef]
- Sridhar, S.; Srinivasan, R. Social Influence Effects in Online Product Ratings. J. Mark. 2012, 76, 70–88. [Google Scholar] [CrossRef]
- Saura, J.R.; Palos-Sanchez, P.; Grilo, A. Detecting indicators for startup business success: Sentiment analysis using text data mining. Sustainability 2019, 11, 917. [Google Scholar] [CrossRef]
- Archak, N.; Ghose, A.; Ipeirotis, P.G. Deriving the Pricing Power of Product Features by Mining Consumer Reviews. Manag. Sci. 2011, 57, 1485–1509. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Duan, W.; Gan, Q. Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decis. Support Syst. 2011, 50, 511–521. [Google Scholar] [CrossRef]
- Chintagunta, P.K.; Gopinath, S.; Venkataraman, S. The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets. Mark. Sci. 2010, 29, 944–957. [Google Scholar] [CrossRef]
- Dellarocas, C.; Zhang, X.; Awad, N.F. Exploring the value of online product reviews in forecasting sales: The case of motion pictures. J. Int. Mark. 2007, 21, 23–45. [Google Scholar] [CrossRef]
- Moon, S.; Bergey, P.K.; Iacobucci, D. Dynamic Effects Among Movie Ratings, Movie Revenues, and Viewer Satisfaction. J. Mark. 2010, 74, 108–121. [Google Scholar] [CrossRef]
- Sawhney, M.S.; Eliashberg, J. A parsimonious model for forecasting gross box-office revenues of motion pictures. Mark. Sci. 1996, 15, 113–131. [Google Scholar] [CrossRef]
- Duan, W.; Gu, B.; Whinston, A.B. Do online reviews matter?—An empirical investigation of panel data. Decis. Support Syst. 2008, 45, 1007–1016. [Google Scholar] [CrossRef]
- Marine-Roig, E. Measuring destination image through travel reviews in search engines. Sustainability 2017, 9, 1425. [Google Scholar] [CrossRef]
- Eliashberg, J.; Hui, S.K.; Zhang, Z.J. From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts. Manag. Sci. 2007, 53, 881–893. [Google Scholar] [CrossRef] [Green Version]
- Basuroy, S.; Desai, K.K.; Talukdar, D. An empirical investigation of signaling in the motion picture industry. J. Mark. Res. 2006, 43, 287–295. [Google Scholar] [CrossRef]
- Basuroy, S.; Chatterjee, S.; Ravid, S.A. How Critical Are Critical Reviews? The Box Office Effects of Film Critics, Star Power, and Budgets. J. Mark. 2003, 67, 103–117. [Google Scholar] [CrossRef]
- King, R.A.; Racherla, P.; Bush, V.D. What We Know and Don’t Know About Online Word-of-Mouth: A Review and Synthesis of the Literature. J. Int. Mark. 2014, 28, 167–183. [Google Scholar] [CrossRef]
- Maichum, K.; Parichatnon, S.; Peng, K.-C. Application of the extended theory of planned behavior model to investigate purchase intention of green products among Thai consumers. Sustainability 2016, 8, 1077. [Google Scholar] [CrossRef]
- Hofstede, G. Culture’s Consequences: International Differences in Work-Related Values; Sage Publications Inc.: Thousand Oaks, CA, USA, 1984; Volume 5. [Google Scholar]
- Hofstede, G.H.; Hofstede, G. Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations across Nations; Sage Publications Inc.: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Hofstede, G.; Minkov, M. Long-versus short-term orientation: New perspectives. Asia Pac. Bus. Rev. 2010, 16, 493–504. [Google Scholar] [CrossRef]
- Markus, H.R.; Kitayama, S. Culture and the self: Implications for cognition, emotion, and motivation. Psychol. Rev. 1991, 98, 224. [Google Scholar] [CrossRef]
- Berry, J.W. Cross-Cultural Psychology: Research and Applications; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Samovar, L.; Porter, R.; McDaniel, E. Communication between Cultures; Cengage Learning: Boston, MA, USA, 2009. [Google Scholar]
- Elberse, A. The Power of Stars: Do Star Actors Drive the Success of Movies? J. Mark. 2007, 71, 102–120. [Google Scholar] [CrossRef]
- Fong, J.; Burton, S. A cross-cultural comparison of electronic word-of-mouth and country-of-origin effects. J. Bus. Res. 2008, 61, 233–242. [Google Scholar] [CrossRef]
- Bampo, M.; Ewing, M.T.; Mather, D.R.; Stewart, D.; Wallace, M. The effects of the social structure of digital networks on viral marketing performance. Inf. Syst. Res. 2008, 19, 273–290. [Google Scholar] [CrossRef]
- Forman, C.; Ghose, A.; Wiesenfeld, B. Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Inf. Syst. Res. 2008, 19, 291–313. [Google Scholar] [CrossRef]
Authors | Response Variable | Explanatory Variables | Industry (Source) | Sample | |
---|---|---|---|---|---|
Ratings | Sentiment | ||||
Archak, et al. [17] | sales rank | O | O | e-commerce (Amazon.com) | 11,897 reviews for 41 digital cameras and 6786 reviews for 19 camcorders |
Cao, et al. [18] | Helpfulness | O | Portal (CNET Download.com) | 3460 reviews for 87 software programs | |
Chen, Liu, and Zhang [11] | abnormal stock returns | O | film (Metacritic) | 1275 third-party product reviews (TPR) for movies produced 7 companies | |
Chintagunta, et al. [19] | box office sales | O | O | film (Yahoo! Movies) | 148 movies and 3766 reviews |
Dellarocas, Gao, and Narayan [10] | volume of user review, box office revenues | O | film (Yahoo! Movies, BoxOfficeMojo) | 63,889 reviews for 104 movies in 2002 and 95,443 reviews for 143 movies | |
Dellarocas, et al. [20] | box office revenues, volume of user reviews | O | film (Yahoo! Movies, BoxOfficeMojo) | critic grade, user grade and user reviews for 71 movies | |
Moon, et al. [21] | box office revenue, satisfaction | O | Film (Rotten Tomatoes, Yahoo! Movies) | professional critics’ and amateurs’ ratings for 246 movies |
Nations | Power Distance | Individualism | Uncertainty Avoidance | Masculinity |
---|---|---|---|---|
United States | 40 | 91 | 46 | 62 |
United Kingdom | 35 | 89 | 35 | 66 |
France | 68 | 71 | 86 | 43 |
Germany | 35 | 67 | 65 | 66 |
South Korea | 60 | 18 | 85 | 39 |
Japan | 54 | 46 | 92 | 95 |
China | 80 | 20 | 30 | 66 |
Hong Kong | 68 | 25 | 29 | 27 |
Type | Variables | Definitions |
---|---|---|
Response Variables | L_RVi,r | Natural log of regional box office revenue for the movie i (US dollars) |
Explanatory Variables | URTi,r | Average scale of regional user rating for the movie i (10 point scale) |
CRTi,r | Average scale of professional critics’ rating for the movie i (10 point scale) | |
UPOSi,r | Number of regional users’ positive terms for the movie i | |
UNEGi,r | Number of regional users’ negative terms for the movie i | |
L_USTi,r | Natural log of users’ net sentiment (UPOSi,r − UNEGi,r) | |
CPOSi,r | Number of regional professional critics’ positive terms for the movie i | |
CNEGi,r | Number of regional professional critics’ negative terms for the movie i | |
L_CSTi,r | Natural log of professional critics’ net sentiment (CPOSi,r − CNEGi,r) | |
Moderating Variables | RGOr1 | Dummy variable for the region r1 where a comment was written (1: For Asian and 0 for Western) |
RGOr2 | Eight dummy variables for the region r2 where a comment was written (US, UK, FR, GR, KR, JP, CN, HK) | |
Control Variables | STRi | Dummy variable for whether there are stars in the movie i |
COPi | Dummy variable for whether the movie i is co-produced | |
L_SCRi,r | Natural log of the total number of regional screens in opening weekend of the movie i | |
GRi | Movie i’s genre using seven dummy variables (Action, Comedy, Drama, Science Fiction, Thriller, Kids, Romance) | |
MPAi | Movie i’s MPAA ratings using five dummy variables (G, PG, PG13, R, and NR) |
Variables | N | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
RVi,r | 2096 | 47,041,985 | 18,745,175 | 971,175 | 336,236,265 |
URTi,r | 2096 | 7.13 | 2.91 | 0.62 | 9.78 |
CRTi,r | 2096 | 6.42 | 2.53 | 1.28 | 9.11 |
UPOSi,r | 2096 | 524.22 | 347.48 | 9 | 5975 |
UNEGi,r | 2096 | 507.47 | 311.22 | 4 | 5987 |
USTi,r | 2096 | 51.17 | 29.94 | −401 | 971 |
CPOSi,r | 2096 | 57.76 | 24.24 | 2 | 275 |
CNEGi,r | 2096 | 37.54 | 17.85 | 0 | 187 |
CSTi,r | 2096 | 23.27 | 17.34 | −32 | 97 |
SCRi,r | 2096 | 17.92 | 84.27 | 6 | 173 |
Hypotheses | Coefficient | t-Value | p | Result | R2 | |
---|---|---|---|---|---|---|
H1a | URTi,r to RVi,r | 0.345 | 6.039 | ** | Accept | 0.446 |
H1b | USTi,r to RVi,r | 0.402 | 7.431 | ** | Accept | 0.624 |
H2a | CRTi,r to RVi,r | 0.040 | 0.419 | n.s. | Reject | 0.021 |
H2b | CSTi,r to RVi,r | 0.247 | 4.177 | ** | Accept | 0.374 |
Model fitness: χ2/df = 1.074 (p < 0.001), GFI = 0.858, AGFI = 0.832, TLI = 0.927, CFI = 0.935 |
Hypotheses & Paths | Unstandardized Coefficients | χ2 | Test Results | |||
---|---|---|---|---|---|---|
Asian Group | Western Group | Unconstrained Model | Constrained Model | Δχ2 | ||
H3a (USTi,r1 to RVi,r1) | 0.568 | 0.583 | 1644.540 | 1644.523 | 0.017 | Reject |
H4a (CSTi,r1 to RVi,r1) | 0.848 | 0.351 | 1245.470 | 1207.414 | 38.056 ** | Accept |
Variable | M1 | M2 | M3 | Variable | M1 | M2 | M3 |
---|---|---|---|---|---|---|---|
URTi,r2 | 0.342 ** | 0.343 ** | 0.345 ** | L_CST*H.K. | 0.547 ** | ||
CRTi,r2 | 0.006 | 0.006 | 0.005 | L_CST*KR | 0.471 ** | ||
L_USTi,r2 | 0.401 ** | 0.403 ** | 0.402 ** | L_CST*U.K. | 0.254 ** | ||
L_CSTi,r2 | 0.243 ** | 0.242 ** | 0.245 ** | L_CST*FR | 0.592 ** | ||
CNr2 | 0.022 | 0.022 | L_CST*GR | 0.281 ** | |||
JPr2 | 0.065 | 0.061 | L_CST*U.S. | 0.243 ** | |||
H.K.r2 | 0.018 | 0.019 | STR | 0.042 ** | 0.044 ** | 0.040 ** | |
KRr2 | 0.048 | 0.045 | COP | 0.058 *** | 0.058 *** | 0.056 *** | |
U.K.r2 | 0.066 | 0.067 | L_SCR | 0.046 *** | 0.047 *** | 0.044 *** | |
FRr2 | 0.072 | 0.074 | GR-SF | −0.042 | −0.045 | −0.043 | |
GRr2 | 0.049 | 0.051 | GR-KD | −0.065 | −0.065 | −0.063 | |
U.S.r2 | 0.143 * | 0.146 * | GR-DRM | 0.206 | 0.208 | 0.204 | |
L_UST*CN | 0.199 ** | GR-CMD | 0.265 | 0.266 | 0.266 | ||
L_UST*JP | 0.543 ** | GR-RMC | 0.303 | 0.305 | 0.302 | ||
L_UST*H.K. | 0.213 ** | GR-AT | 0.439 | 0.439 | 0.438 | ||
L_UST*KR | 0.572 ** | MPA-PG | 0.047 | 0.048 | 0.045 | ||
L_UST*U.K. | 0.311 ** | MPA-PG13 | −0.623 | −0.625 | −0.622 | ||
L_UST*FR | 0.431 ** | MPA-R | −0.147 | −0.149 | −0.146 | ||
L_UST*GR | 0.393 ** | MPA-NR | −0.028 | −0.032 | −0.027 | ||
L_UST*U.S. | 0.276 ** | R2 | 0.628 | 0.629 | 0.631 | ||
L_CST*CN | 0.619 ** | F-value | 78.29 *** | 78.82 *** | 79.27 *** | ||
L_CST*JP | 0.468 ** | - | - | - | - |
Variable | Standard Deviation | Value of Individualism vs. Collectivism |
---|---|---|
L_UST*CN | 162.1 | 20 |
L_UST*JP | 311.7 | 46 |
L_UST*H.K. | 207.2 | 25 |
L_UST*KR | 174.7 | 18 |
L_UST*U.K. | 464.2 | 89 |
L_UST*FR | 392.6 | 71 |
L_UST*GR | 353.9 | 67 |
L_UST*U.S. | 462.5 | 91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwangbo, H.; Kim, J. A Text Mining Approach for Sustainable Performance in the Film Industry. Sustainability 2019, 11, 3207. https://doi.org/10.3390/su11113207
Hwangbo H, Kim J. A Text Mining Approach for Sustainable Performance in the Film Industry. Sustainability. 2019; 11(11):3207. https://doi.org/10.3390/su11113207
Chicago/Turabian StyleHwangbo, Hyunwoo, and Jonghyuk Kim. 2019. "A Text Mining Approach for Sustainable Performance in the Film Industry" Sustainability 11, no. 11: 3207. https://doi.org/10.3390/su11113207
APA StyleHwangbo, H., & Kim, J. (2019). A Text Mining Approach for Sustainable Performance in the Film Industry. Sustainability, 11(11), 3207. https://doi.org/10.3390/su11113207