Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Calcium Oxide Nanoparticles
2.3. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ejaz, N.; Akhtar, N.; Nisar, H.; Ali Naeem, U. Environmental impacts of improper solid waste management in developing countries: A case study of Rawalpindi city. WIT Trans. Ecol. Environ. 2010, 142, 379–387. [Google Scholar] [CrossRef]
- Mavropoulos, A.; Wilson, D.; Cooper, J.; Costas, V.; Appelqvist, B. Globalization and Waste Management; International Solid Waste association (ISWA): Vienna, Austria, 2012; pp. 1–55. [Google Scholar]
- Akbar, A.; Hamideh, F. Application of eggshell wastes as valuable and utilizable products: A review. Res. Agric. Eng. 2018, 64, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Jose Valente, F.C.; Roberto, L.R.; Jovita, M.B.; Rosa María, G.C.; Antonio, A.P.; Gladis Judith, L.D. Sorption mechanism of Cd(II) from water solution onto chicken eggshell. App. Sur. Sci. 2013, 276, 682–690. [Google Scholar] [CrossRef]
- Duncan, C.; Allison, R. Sustainable bio-inspired limestone eggshell powder for potential industrialized applications. ACS Sustain. Chem. Eng. 2015, 3, 941–949. [Google Scholar] [CrossRef]
- Gerko, O. Metal oxide nanoparticles: Synthesis, characterization, and application. J. Sol. Gel Sci. Technol. 2006, 37, 161–164. [Google Scholar] [CrossRef]
- Ming, H.; Shujuan, Z.; Bingcai, P.; Weiming, Z.; Lu, L.; Quanxing, Z. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Lin, X.; Burns, R.C.; Lawrance, G.A. Heavy metals in wastewater: The effect of electrolyte composition on the precipitation of cadmium (ii) using lime and magnesia. Water Air Soil Pollut. 2005, 165, 131–152. [Google Scholar] [CrossRef]
- El-Dafrawy, S.M.; Youssef, H.M.; Toamah, W.O.; El-Defrawy, M.M. Synthesis of nano-CaO particles and its application for the removal of Copper (II), Lead (II), Cadmium (II) and Iron (III) from aqueous solutions. Egypt. J. Chem. 2015, 58, 579–589. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Ololade, I.A.; Olaseni, S.E.; Olatujoye, V.O.; Jegede, O.S.; Agunloye, A.O. Synthesis of nano calcium oxide from a gastropod shell and the performance evaluation for Cr (VI) removal from aqua system. Ind. Eng. Chem. Res. 2012, 51, 639–648. [Google Scholar] [CrossRef]
- Setiawan, B.D.; Oviana, R.; Fadhilah Brilianti, N.; Wasito, H. Nanoporous of waste avian eggshell to reduce heavy metal and acidity in water. Sus. Chem. Phar. 2018, 10, 163–167. [Google Scholar] [CrossRef]
- Wenqiang, L.; An, H.; Qin, C.; Yin, J.; Wang, G.; Feng, B.; Xu, M. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture-A review. Energy Fuels 2012, 26, 2751–2767. [Google Scholar] [CrossRef]
- Nikulshina, V.; G´alvez, M.E.; Steinfeld, A. Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chem. Eng. J. 2007, 129, 75–83. [Google Scholar] [CrossRef]
- Boeya, P.L.; Pragas Maniama, G.; Abd Hamid, S. Performance of calcium oxide as a heterogeneous catalyst in biodiesel production. A review. Chem. Eng. J. 2011, 168, 15–22. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Sutha, M.; Sowndarya, K.; Chandran, M.; Yuvaraj, D.; Praveen Kumar, R. Calcium Oxide Nanoparticles as an Effective Filtration aid for Purification of Vehicle Gas Exhaust; Srivastava, D.K., Ed.; Springer: Singapore, 2018. [Google Scholar]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide nanoparticles for cultural heritage: Consolidation and protection of wall paintings and carbonate materials. J. Colloid Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.A.; Morsali, A. Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures. J. Exp. Nano Sci. 2010, 5, 93–105. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, Y.; Zhang, X.; Zhang, T.; Zhang, T.; Li, X. Synthesis and characterization of calcium hydroxide nanoparticles by hydrogen plasma-metal reaction method. Mater. Lett. 2010, 64, 2575–2577. [Google Scholar] [CrossRef]
- Darroudia, M.; Bagherpour, M.; Ali Hosseinie, H.; Ebrahimic, M. Biopolymer-assisted green synthesis and characterization of calcium hydroxide nanoparticles. Ceram. Int. 2016, 42, 3816–3819. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, J. Microwave assisted synthesis of CaO nanoparticles and use in waste water treatment. Nano Technol. 2011, 3, 565–568. [Google Scholar]
- Roy, A.; Gauri, S.S.; Bhattacharya, M.; Bhattacharya, J. Antimicrobial Activity of CaO Nanoparticles. J. Biomed. Nanotechnol. 2013, 9, 1–8. [Google Scholar] [CrossRef]
- Ghiasi, M.; Malekzadeh, A. Synthesis of CaCO3 nanoparticles via citrate method and sequential preparation of CaO and Ca(OH)2 nano particles. Cryst. Res. Technol. 2012, 47, 471–478. [Google Scholar] [CrossRef]
- Sadeghi, M.; Husseini, M.H. A Novel Method for the Synthesis of CaO Nanoparticle for the Decomposition of Sulfurous Pollutant. J. Appl. Chem. Res. 2013, 7, 39–49. [Google Scholar]
- Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J. Ind. Eng. Chem. 2014, 20, 113–117. [Google Scholar] [CrossRef]
- Butt, A.R.; Ejaz, S.J.; Baron, C.; Ikram, M.; Ali, S. CaO nanoparticles as a potential drug delivery agent for biomedical applications. Dig. J. Nanomater. Biostruct. 2015, 10, 799–809. [Google Scholar]
- Gedda, G.; Pandey, S.; Lina, Y.C.; Wu, H.F. Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells. Green Chem. 2015, 17, 3276–3280. [Google Scholar] [CrossRef]
- Arul, E.; Raja, K.; Krishnan, S.; Sivaji, K.; Jerome, D.S. Bio-Directed synthesis of calcium oxide (Cao) nanoparticles extracted from limestone using honey. J. Nanosci. Nanotechnol. 2018, 18, 5790–5793. [Google Scholar] [CrossRef] [PubMed]
- Heung Jai, P.; Seong Wook, J.; Jae Kyu, Y.; Boo Gil, K.; Seung Mok, L. Removal of heavy metals using waste eggshell. J. Environ. Sci. 2007, 19, 1436–1441. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Eggshell waste to produce building lime: Calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 2018, 51, 1–14. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Recycling waste seashells to produce calcitic lime: Characterization and wet slaking reactivity. Waste Biomass Valoriz. 2018, 1–18. [Google Scholar] [CrossRef]
- Tizo, M.S.; Blanco, L.A.V.; Cagas AC, Q.; Dela Cruz BR, B.; Encoy, J.C.; Gunting, J.V.; Arazo, R.O.; Mabayo, V.I.F. Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustain. Environ. Res. 2018, 28, 326–332. [Google Scholar] [CrossRef]
- Darezereshki, E. Synthesis of maghemetute nanoparticles by wet chemical method at room temperature. Mater. Lett. 2010, 64, 1471–1472. [Google Scholar] [CrossRef]
- Aramend´ıa, M.; Borau, V.; Jiménez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein–Ponndorf–Verley reaction. Appl. Catal. A Gen. 2003, 244, 207–215. [Google Scholar] [CrossRef]
- Khan, M.D.; Ahn, J.W.; Nam, G. Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells. J. Environ. Manag. 2018, 223, 947–951. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | MnO | P2O5 | Ig. Loss |
---|---|---|---|---|---|---|---|---|---|---|---|
Raw eggshell (%) | <0.01 | <0.01 | <0.01 | 52.75 | 0.52 | 0.04 | 0.05 | <0.01 | <0.01 | 0.22 | 46.62 |
Nano-CaO (%) | 0.08 | 0.04 | 0.05 | 86.93 | 1.08 | 0.14 | 1.32 | <0.01 | <0.01 | 0.43 | 9.3 |
Method | Summary | Reference |
---|---|---|
Facial calcination | A total of 50 nm of calcium oxide nano-particles were obtained by facile thermal treating of calcite at 900 °C temperature for 5 h and then by lime hydrolysis. | Malekzadeh et al., 2012 [21] |
Microwave irradiation | By microwave processing, the calcium oxide nano-particles were obtained at 160 °C temperature in the 5 min with the average particle size is 14~24 nm. | Jayanta Bhattacharya et al., 2013 [20] |
Co-Precipitation | CaO nano-particles are synthesized by the co precipitation method, in presence of polyvinylpyrrolidone (PVP) reagent for control the agglomeration. The average time takes for this synthesis was 12 h at 40 °C temperature. The average size of the nano-particles are 100 nm. | Meysam Sadeghi et al., 2013 [22] |
Direct thermal decomposition | Calcium oxide nano-particles were synthesized by direct thermal decomposition method at 80 °C by blowing inert argon gas with the average particle size is 91 nm~94 nm. | Fereshteh Bakhtiari et al., 2014 [23] |
Chemical co-precipitation | Chemical co-precipitation was applied for the synthesis of calcium oxide nano-particles in presence of polyvinyl alcohol. The average particle size is 11 nm at 80 °C for 60 min. | Ali et al., 2015 [24] |
Two step process (Green synthesis) | CaO nano-particles were synthesized from shrimp cells by two step process with the average particle size is 40 to 130 nm. | Hui-Fen Wu et al., 2015 [25] |
Two step thermal decomposition | Crystallite size of calcium oxide nano-particles were obtained by 2 step thermal decomposition method. | Arul et al., 2018 [26] |
Sol-gel method (present authors used) | A total of 50–198 nm of calcium oxide nanoparticles was obtained at ambient temperature, with less cost, no additives, shorter time and a calcination temperature of 900 °C for 1 h only. | Ahn et al., 2019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habte, L.; Shiferaw, N.; Mulatu, D.; Thenepalli, T.; Chilakala, R.; Ahn, J.W. Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method. Sustainability 2019, 11, 3196. https://doi.org/10.3390/su11113196
Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW. Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method. Sustainability. 2019; 11(11):3196. https://doi.org/10.3390/su11113196
Chicago/Turabian StyleHabte, Lulit, Natnael Shiferaw, Dure Mulatu, Thriveni Thenepalli, Ramakrishna Chilakala, and Ji Whan Ahn. 2019. "Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method" Sustainability 11, no. 11: 3196. https://doi.org/10.3390/su11113196
APA StyleHabte, L., Shiferaw, N., Mulatu, D., Thenepalli, T., Chilakala, R., & Ahn, J. W. (2019). Synthesis of Nano-Calcium Oxide from Waste Eggshell by Sol-Gel Method. Sustainability, 11(11), 3196. https://doi.org/10.3390/su11113196