Environmental Efficiency of Organic and Conventional Cotton in Benin
Abstract
:1. Introduction
2. Literature Review of the Cotton Sector
3. Materials and Methods
3.1. Study Area and Sampling
3.2. Analytical Framework of Environmental Efficiency
- (1)
- It is homogenous:
- (2)
- It is non-decreasing in desirable outputs:
- (3)
- It is non-increasing in undesirable outputs:
- (4)
- It is non-increasing in input:
3.3. Empirical Model
- Cotton yield (kg per hectare) of producer i
- Amount of cottonseed (kg per hectare)
- Amount of chemical fertilizer (NPK and urea) (kg per hectare)
- Amount of organic fertilizer (kg per hectare)
- Amount of synthetic pesticides or organic pesticides (liter per hectare)
- Amount of labor (man hour per hectare)
- Amount of GHGs emitted (kg CO2e per hectare)
3.3.1. Production Elasticity
3.3.2. Shadow Price of Undesirable Output
3.3.3. Estimation of the Undesirable Output
3.4. Data Collection
4. Results
4.1. Socio-economics Characteristics of Producer
4.2. Farm Characteristics
4.3. Environmental Efficiency and Shadow Price of Cotton Farming
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. Meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef]
- Relyea, R. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 2005, 15, 618–627. [Google Scholar] [CrossRef]
- Trang, N.; Khai, H.; Tu, H.; Hong, N. Environmental efficiency of transformed farming systems: A case study of change from sugarcane to shrimp in the vietnamese mekong delta. For. Res. Eng. Int. J. 2018, 2, 54–60. [Google Scholar]
- Seufert, V.; Ramankutty, N.; Foley, J. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- IFOAM, (International Federation of Organic Agriculture Movements). Resource Efficiency and Organic Frming: Facing Up to the Challenge; IFOAM EU Group: Belgium, Brussel, 2011. [Google Scholar]
- Marchand, S.; Guo, H. The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production. China Econ. Rev. 2014, 31, 201–2016. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Aldanondo-Ochoa, A.; Casasnovas-Olivia, V.L.; Arandia-Miura, A. Environmental efficiency and the impact of regulation in dryland organic vine production. Land Use Policy 2014, 36, 275–284. [Google Scholar] [CrossRef]
- Ba, A.; Barbier, B. Economic and Environmental Performances of Organic Farming System Compared to Conventional Farming System: A Case Farm Model to Simulate the Horticultural Sector of the Niayes Region in Senegal. J. Hortic. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Tongwane, M.; Moeletsi, M. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organisation). Organic Agriculture and Climate Change Mitigation: A Report of the Round Table on Organic Agriculture and Climate Change; Food and Agriculture Organization of the United Nations (FAO), Natural Resources Management and Environment Department: Rome, Italy, 2011. [Google Scholar]
- Ba, M. Analysis of Agricultural Commodities Value Chains and Greenhouse Gas Emission in Rice and Maize in West Africa: Impact on Food Security. Agric. Sci. 2016, 7, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Njuki, E.; Bravo-Ureta, B.; Mukherjee, D. The Good and the Bad: Environmental Ef ciency in Northeastern U.S. Dairy Farm. Agric. Resour. Econ. Rev. 2016, 45, 22–43. [Google Scholar] [CrossRef]
- ICAC (International Cotton Advisory Committee). Measuring Sustainability in Cotton Farming Systems Towards a Guidance Framework; International Cotton Advisory Committee: Washington, DC, USA, 2015.
- Kpadé, P.C. Adaptation de la Coordination et Nouvelles Contradictions entre Acteurs du système coton au Bénin face à la Libéralisation Économique. Thèse de Doctorat, Université de Bourgogne, Science Économique, Dijon, France, 2011. [Google Scholar]
- PASCiB (Plateforme des Acteurs de la Société Civile du Bénin). La Filière coton au Bénin: Regard et Analyses Prospectives de la Société Civile; PASCiB: Cotonou, Bénin, 2013. [Google Scholar]
- MAEP (Ministère de l’Agriculture de l’Elevage et de la Pêche). Plan Stratégique de Relance du Secteur Agricole (PSRSA) au Bénin; MAEP: Cotonou, Bénin, 2000. [Google Scholar]
- Bonou-zin, D.C.R.; Allali, K.; Tovignan, D.S.; Yabi, A.J.; Houessionon, P. Drivers of Farmers’ Perception of the Environmental Externalities of Cotton Production Practices in Benin: A Tobit Analysis. J. Agric. Environ. Sci. 2019, 7, 120–130. [Google Scholar] [CrossRef]
- Sodjinou, E.; Glin, L.C.; Nicolay, G.; Tovignan, S.; Hinvi, J. Socioeconomic determinants of organic cotton adoption in Benin, West Africa. Agric. Food Econ. 2015, 3, 1–22. [Google Scholar] [CrossRef]
- Honfoga, B.G. Diagnosing soil degradation and fertilizer use relationship for sustainable cotton production in Benin. Cogent Environ. Sci. 2018, 4, 1422366. [Google Scholar] [CrossRef]
- Kumbhakar, S.; Orea, L.; Tsionas, E.; Rodriguez-Alavez, A. Do we estimate an input or an output distance function? An application of the mixture approach to European railways. J. Product. Anal. 2007, 27, 87–100. [Google Scholar] [CrossRef]
- Cuesta, R.; Lovell, C.; Zofio, J. Environmental efficiency measurement with Translog distance functions: A parametric approach. Ecol. Econ. 2009, 68, 2232–2242. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lovell, C.; Pasurka, C. Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Rev. Econ. Stat. 1989, 78, 90–98. [Google Scholar] [CrossRef]
- Chung, Y.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Noh, D.-W.; Weber, W. Characteristics of a polluting technology: Theory and practice. J. Econom. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Sodjinou, E. Poultry-Based Intervention as Tool for Poverty Reduction and Gender Empowerment: Empirical Evidence from Benin. Ph.D. Thesis, Institute of Food and Resource Economics, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark, 2011. [Google Scholar]
- Färe, R.; Primont, D. Multi-Output Production and Duality: Theory and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Fare, R.; Grosskopf, S.; Lovell, C.A.; Yaisawarng, S. Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach. Rev. Econ. Stat. 1993, 75, 374–380. [Google Scholar] [CrossRef]
- Kumbhakar, S.; Wang, H.-J.; Horncastle, A. A Practitioner’s Guide to Stochastic Frontier Analysis Using Stata; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar]
- Kumbhakar, S.; Ghosh, S.; Mucguckin, J.T. A generalized production frontier approach for estimating determinants of inefficiency in U.S. dairy farm. J. Bus. Econ. Stat. 1991, 9, 279–286. [Google Scholar]
- Battese, G.; Coelli, T. A model for technical inefficiency effect in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Alamu, B.A.; Nuppenau, E.-A.; Boland, H. Technical Efficiency of Farming Systems across Agro-ecological Zones in Ethiopia: An Application of Stochastic Frontier Analysis. 2009. Available online: http://www.csae.ox.ac.uk/conferences/2009-EDiA/papers/030-Alemu.pdf (accessed on 11 March 2019).
- Ndambiri, H.K.; Ritho, C.; Mbogoh, S.; Ng’ang’a, S.I.; Muiruri, E.J.; Nyangweso, P.; Cherotwo, F.H. Analysis of Farmers’ Perceptions of the Effects of Climate Change in Kenya: The Case of Kyuso District. J. Environ. Earth Sci. 2012, 2, 74–81. [Google Scholar]
- Rahman, S. Environmental impacts of modern agricultural technology diffusion in Bangladesh: An analysis of farmers’ perceptions and their determinants. J. Environ. Manag. 2003, 68, 183–191. [Google Scholar] [CrossRef]
- Dyer, J.; Desjardins, R. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosyst. Eng. 2006, 93, 107–118. [Google Scholar] [CrossRef]
- Kramer, K.; Moll, H.; Nonhebel, S. Total greenhouse gas emissions related to the Dutch crop production system. Agric. Ecosyst. Environ. 1999, 72, 9–16. [Google Scholar] [CrossRef]
- Macedo, I.; Seabra, J.; Silva, J. Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 2008, 32, 582–595. [Google Scholar] [CrossRef]
- Xiaomei, L.; Kotelko, M. An integrated manure utilization system (imus): Its social and environmental benefits. Lecture No.: AG056. In Proceedings of the 3rd International Methane and Nitrous Oxide Mitigation Conference, Beijing, China, 17–21 November 2003. [Google Scholar]
- IPCC, (Intergouvernemental Panel on Climate Change). IPCC Guidelines for National Greenhouse Gas Inventories Prepared by the National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies: Tokyo, Japan, 2006. [Google Scholar]
- Audsley, E.; Stacey, K.; Parsons, D.; Williams, A. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use; Prepared for Crop Protection Association; Cranfield University: Silsoe, UK, 2009. [Google Scholar]
- IPCC, (Intergouvernemental Panel on Climate Change). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment; Pachauri, R.K., Reisinger, A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Kodde, D.; Palm, F. Wald criteria for jointly testing equality and inequality restriction. Econometrica 1986, 50, 1243–1248. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Dal Ferro, N.; Zanin, G.; Borin, M. Crop yield and energy use in organic and conventional farming: A case study in north-east Italy. Eur. J. Agron. 2017, 86, 37–47. [Google Scholar] [CrossRef]
- Kirchmann, H.; Bergström, L.; Kätterer, T.; Andrén, O.; Andersson, R. Can organic crop production feed the world. In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Doordrecht, The Netherlands, 2008; pp. 39–72. [Google Scholar]
- Omotayo, O.E.; Chukwuka, K.S. Soil fertility restoration techniques in Sub- Saharan Africa using organic resources. Review. Afr. J. Agric. Res. 2009, 4, 144–150. [Google Scholar]
- Amouzou, K.; Naab, J.; Lamers, J.; Becker, M. Productivity and nutrient use efficiency of maize, sorghum, and cotton in the West African Dry Savanna. J. Plant Nutr. Soil Sci. 2018, 181, 261–274. [Google Scholar] [CrossRef]
- Serra, T.; Goodwin, B. The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach. J. Produat. Anal. 2009, 31, 113–124. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Kuyvenhoven, A.; Qu, F. Impact of land fragmentation on rice producers’ technical efficiency. NJAS Wagening. J. Life Sci. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Kroupova, Z.; Cechura, L.; Havlikova, M.; Halova, P.; Maly, M. Shadow prices of greenhouse gas emissions: An application to the Czech dairy production. Agric. Econ. Czech 2018, 64, 291–300. [Google Scholar] [Green Version]
- Kantelhardt, J.; Eckstein, K.; Hoffmann, H. Assessing programs for the provision of agri-environmental services—An efficiency analysis realized in Southern Germany. In Proceedings of the Conference of the International Association of Agricultural Economists (IAAE), Beijing, China, 16–22 August 2009; p. 13. [Google Scholar]
Variables | Type | Modality | Sign |
---|---|---|---|
Age | Continuous | + | |
Gender | Binary | 0 = Female, 1 = Male | + |
Year of schooling | Continuous | + | |
Experience in cotton production | Continuous | + | |
Contact with extension services | Binary | 0 = No, 1 = Yes | + |
Access to agricultural credit | Binary | 0 = No, 1 = Yes | + |
Access to information on environmental effects of cotton practices | Binary | 0 = No, 1 = Yes | + |
Training on agricultural practices | Binary | 0 = No, 1 = Yes | + |
Soil fertility level assessment | Binary | 0 = Poor, 1 = Fertile | + |
Input | Unit | g/Unit | (kg/Unit) | Source | ||
---|---|---|---|---|---|---|
CO2 | N2O | CH4 | CO2e | |||
Machinery | Mj | 71 | - | - | 0.071 | [35] |
Diesel fuel | l | 3560 | 0.7 | 5.2 | 3.8862 | [36] |
Gasoline | l | 3393 | 3.393 | [37] | ||
Organic fertilizer | kg | 126 | - | - | 0.126 | [38] |
N | kg | 3970 | 3.97 | [37] | ||
P | kg | 1000 | 0.02 | 1.8 | 1.3 | [37] |
K | kg | 700 | 0.01 | 1 | 0.710 | [37] |
N_urea | kg | 1595.6 | 1.5956 | [39] * | ||
Direct emission (N) | kg | 15.7 | 0.3768 | [39] * | ||
Volatilization (N) | kg | 1.96 | 0.0470 | [39] * | ||
Runoff (N) | kg | 3.53 | 0.0847 | [39] * | ||
Herbicide | 2960 | 29.6 | [40] | |||
Insecticide | kg | 2139 | - | - | 21.39 | [40] |
Potential | kg | 1 | 24 | 310 | [41] |
Socio-economics Characteristics | Organic | Conventional | Total | Statistic Test |
---|---|---|---|---|
Age of producer | 42.16 (10.76) | 44.14 (12.12) | 43.14 (11.48) | 1.63 * |
Formal education | 2.45 (4.19) | 3.96 (4.82) | 3.19 (4.57) | 3.15 *** |
Experience in cotton production | 12.36 (9.42) | 18.7 (9.9) | 15.48 (10.15) | 6.18 *** |
Gender of producer (% male) | 75 | 99.4 | 87 | 46.94 *** |
Access to Credit (%) | 3.9 | 30.9 | 17.2 | 45.34 *** |
soil fertility (%) | 32.6 | 22.2 | 27.3 | 4.78 ** |
Contact with extension agent (%) | 28.3 | 20.6 | 24.5 | 2.88 * |
Access to information on the environmental effect of cotton practices (%) | 41.7 | 17.8 | 29.6 | 40.44 *** |
Training on agricultural practice (%) | 14.4 | 9.1 | 11.8 | 2.39 |
Inputs | Organic | Conventional | Total | t-Student |
---|---|---|---|---|
cotton area (Hectare) | 1.29 (1.06) | 8.52 (10.06) | 4.85 (7.96) | 9.57 *** |
Seed (kg/ha) | 29.75 (11.29) | 29.23 (10.80) | 29.49 (11.04) | 0.44 |
chemical fertilizer (kg/ha) | 0 | 211.55 (71.29) | 104.29 (117.12) | 39.81 *** |
organic fertilizer (kg/ha) | 2227.55 (3977.71) | 465.94 (1134.71) | 1359.15 (3067.77) | 5.64 *** |
chemical pesticides (l/ha) | 0 | 8.19 (4.08) | 8.19 (4.04) | 3.5 *** |
organic pesticide (l/ha) | 21.54 (50.24) | 0 | 21.54 (36.46) | 3.5 *** |
human labor (man hour/ha) | 777.40 (929.05) | 887.90 (1128.08) | 831.87 (1031.99) | 1 |
cotton yield (kg/ha) | 924.27 (326.30) | 1230.47 (297.79) | 1075.21 (347.75) | 9.22 *** |
GHG (kg CO2e/ha) | 462.65 (580.74) | 882.06 (357.98) | 669.40 (526.89) | 8.16 *** |
Variables | Coefficients | t-Test | p Value |
---|---|---|---|
Seed | 0.950 (0.770) | 1.23 | 0.218 |
Chemical fertilizer | −1.196 (0.149) *** | −8.01 | 0.000 |
Organic fertilizer | −0.244 (0.080) *** | −3.03 | 0.002 |
Pesticide | 0.379 (0.223) * | 1.70 | 0.089 |
Labor | −0.666 (0.217) *** | −3.06 | 0.002 |
GHGs | 0.891 (0.315) *** | 2.83 | 0.005 |
Seed2 | −0.350 (0.180) ** | −1.94 | 0.052 |
Chemical fertilizer 2 | −0.191 (0.029) *** | −6.49 | 0.000 |
Organic fertilizer 2 | −0.042 (0.006) *** | −7.10 | 0.000 |
Pesticide 2 | 0.015 (0.021) | 0.69 | 0.493 |
Labor 2 | −0.016 (0.019) | −0.79 | 0.431 |
GHGs 2 | −0.068 (0.025) *** | −2.70 | 0.007 |
Seed * Chemical fertilizer | 0.020 (0.021) | 0.97 | 0.330 |
Seed * Organic fertilizer | 0.004 (0.012) | 0.30 | 0.761 |
Seed * Pesticide | 0.087 (0.041) ** | 2.14 | 0.032 |
Seed * Main d’œuvre | 0.050 (0.041) | 1.23 | 0.220 |
Seed * GES | −0.029 (0.048) | −0.61 | 0.539 |
Chemical fertilizer *Engrais organique | −0.006 (0.002) ** | −2.49 | 0.013 |
Chemical fertilizer * Pesticide | 0.005 (0.012) | 0.46 | 0.648 |
Chemical fertilizer * Labor | −0.002 (0.008) | −0.22 | 0.827 |
Chemical fertilizer * GES | 0.117 (0.013) *** | 9.18 | 0.000 |
Organic fertilizer * Pesticide | 0.004 (0.007) | 0.52 | 0.601 |
Organic fertilizer * Labor | −0.005 (0.005) | −1.03 | 0.302 |
Organic fertilizer * GES | 0.029 (0.007) *** | 4.26 | 0.000 |
Pesticide * Labor | −0.024 (0.018) | −1.37 | 0.170 |
Pesticide * GES | −0.043 (0.015) *** | −2.88 | 0.004 |
Labor * GES | 0.049 (0.015) *** | 3.23 | 0.001 |
Constant | 1.091 (2.460) | 0.44 | 0.657 |
Sigmau_2 | 0.075 (0.014) *** | 5.31 | |
Sigmav_2 | 0.017 (0.003) *** | 4.44 | |
LR test | 16.69 *** | ||
Inefficiency factors | Marginal effect | ||
Age | 0.026 (0.012) ** | 2.23 | 0.003 |
Year of schooling | 0.023 (0.024) | 0.97 | 0.003 |
Gender of cotton farmer (Male) | −0.208 (0.313) | −0.66 | −0.023 |
Contact with extension services | −0.440 (0.243) * | −1.81 | −0.049 |
Access to agricultural credit | −0.854 (0.319) *** | −2.67 | −0.09 |
Training on agricultural practice | 0.251 (0.313) | −0.80 | −0.028 |
Access to information on environmental effect of cotton practices | −0.445 (0.158) *** | −2.27 | −0.049 |
Soil fertility | −1.863 (0.821) | −2.81 | −0.207 |
Experience in cotton production | −0.028 (0.01) ** | −1.99 | −0.003 |
constant | −0.161 (1.019) | −0.16 |
Input Elasticity | Organic | Conventional | Total | t-Test |
---|---|---|---|---|
Seed | −0.079 (0.149) | −0.012 (0.127) | −0.463 (0.142) | 4.49 *** |
Chemical fertilizer | −0.488 (0.003) | |||
Organic fertilizer | −0.114 (0.106) | 0.022 (0.124) | −0.468 (0.1341) | 11.13 *** |
Pesticides (Bio) | 0.075 (0.047) | 0.019 (0.031) | 0.048 (0.048) | −13.11 ** |
Human labor | −0.021 (0.030) | 0.062 (0.030) | 0.083 (0.0735 | 16.65 *** |
GHGs | 0.314 (0.091) | 0.769 (0.10) | 0.538 (0.247) | 44.72 *** |
Farm Type | Organic | Conventional | Total |
---|---|---|---|
Small | 84.64 (6.24) | 113.94 (8.20) | 110.03 (12.93) |
Medium | 74.47 (17.78) | 115.18 (8.28) | 93.77 (24.75) |
Large | 69.02 (14.90) | 111.53 (8.83) | 90.28 (24.73) |
Total | 74.10 (17.51) | 114.76 (8.34) | 94.14 (24.57) |
Efficiency Index | Organic | Conventional | Total | t-Test |
---|---|---|---|---|
Inefficiency | 0.263 (0.207) | 0.164 (0.088) | 0.214 (0.197) | −5.79 *** |
Environemental efficiency | 0.786 (0.137) | 0.854 (0.068) | 0.819 (0.114) | 17.24 *** |
Farm Size | Organic | Conventional | Total |
---|---|---|---|
Small | 0.66 (0.32) | 0.80 (0.11) | 0.78 (0.14) |
Medium | 0.79 (0.13) | 0.85 (0.06) | 0.82 (0.11) |
Large | 0.72 (0.16) | 0.88 (0.04) | 0.80 (0.13) |
Total | 0.78 (0.14) | 0.85 (0.06) | 0.81 (0.11) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonou-zin, R.D.C.; Allali, K.; Fadlaoui, A. Environmental Efficiency of Organic and Conventional Cotton in Benin. Sustainability 2019, 11, 3044. https://doi.org/10.3390/su11113044
Bonou-zin RDC, Allali K, Fadlaoui A. Environmental Efficiency of Organic and Conventional Cotton in Benin. Sustainability. 2019; 11(11):3044. https://doi.org/10.3390/su11113044
Chicago/Turabian StyleBonou-zin, Régina D.C., Khalil Allali, and Aziz Fadlaoui. 2019. "Environmental Efficiency of Organic and Conventional Cotton in Benin" Sustainability 11, no. 11: 3044. https://doi.org/10.3390/su11113044
APA StyleBonou-zin, R. D. C., Allali, K., & Fadlaoui, A. (2019). Environmental Efficiency of Organic and Conventional Cotton in Benin. Sustainability, 11(11), 3044. https://doi.org/10.3390/su11113044