Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction and Description of the Database Used for Comparison
2.2. Comparisons and Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fridman, J.; Holm, S.; Nilsson, M.; Nilsson, P.; Ringvall, A.H.; Ståhl, G. Adapting national forest inventories to changing requirements—The case of the Swedish national forest inventory at the turn of the 20th century. Silva Fenn. 2014, 48, 1095. [Google Scholar] [CrossRef]
- Bussotti, F.; Pollastrini, M. Traditional and novel indicators of climate change impacts on european forest trees. Forests 2017, 8, 137. [Google Scholar] [CrossRef]
- Ray, D.; Petr, M.; Mullett, M.; Bathgate, S.; Marchi, M.; Beauchamp, K. A simulation-based approach to assess forest policy options under biotic and abiotic climate change impacts: A case study on Scotland’s National Forest Estate. For. Policy Econ. 2019, 103, 17–27. [Google Scholar] [CrossRef]
- Marchi, M.; Ferrara, C.; Biasi, R.; Salvia, R.; Salvati, L. Agro-forest management and soil degradation in mediterranean environments: towards a strategy for sustainable land use in vineyard and olive cropland. Sustainability 2018, 10, 2565. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Paracchini, M.L.; Schulp, C.J.E.; Stürck, J.; Verkerk, P.J.; Verburg, P.H.; Lavorel, S. Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecol. Indic. 2017, 73, 23–28. [Google Scholar] [CrossRef][Green Version]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Kerns, B.K.; Cushman, S.; Shaw, C.G. Managing uncertainty in climate-driven ecological models to inform adaptation to climate change. Ecosphere 2011, 2, art102. [Google Scholar] [CrossRef]
- Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef][Green Version]
- Marchetti, M.; Vizzarri, M.; Lasserre, B.; Sallustio, L.; Tavone, A. Natural capital and bioeconomy: Challenges and opportunities for forestry. Ann. Silvic. Res. 2014, 38, 62–73. [Google Scholar]
- Imeson, A. Desertification, Land Degradation and Sustainability; John Wiley & Sons, Inc.: New York, NY, USA, 2012; ISBN 9781119977759. [Google Scholar]
- Ferrarini, A.; Selvaggi, A.; Abeli, T.; Alatalo, J.M.; Orsenigo, S.; Gentili, R.; Rossi, G. Planning for assisted colonization of plants in a warming world. Sci. Rep. 2016, 6, 28542. [Google Scholar] [CrossRef][Green Version]
- Chakraborty, D.; Wang, T.; Andre, K.; Konnert, M.; Lexer, M.J.; Matulla, C.; Schueler, S. Selecting populations for non-analogous climate conditions using universal response functions: The case of douglas-fir in central Europe. PLoS ONE 2015, 10, e0136357. [Google Scholar] [CrossRef]
- Marchi, M.; Ducci, F. Some refinements on species distribution models using tree-level national forest inventories for supporting forest management and marginal forest population detection. iForest Biogeosci. For. 2018, 11, 291–299. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Fady, B.; Aravanopoulos, F.A.; Alizoti, P.; Mátyás, C.; von Wühlisch, G.; Westergren, M.; Belletti, P.; Cvjetkovic, B.; Ducci, F.; Huber, G.; et al. Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. For. Ecol. Manag. 2016, 375, 66–75. [Google Scholar] [CrossRef][Green Version]
- Zhang, Q.; Wei, H.; Zhao, Z.; Liu, J.; Ran, Q.; Yu, J.; Gu, W.; Zhang, Q.; Wei, H.; Zhao, Z.; et al. Optimization of the fuzzy matter element method for predicting species suitability distribution based on environmental data. Sustainability 2018, 10, 3444. [Google Scholar] [CrossRef]
- Castaldi, C.; Vacchiano, G.; Marchi, M.; Corona, P. Projecting nonnative Douglas fir plantations in southern europe with the forest vegetation simulator. For. Sci. 2017, 63, 101–110. [Google Scholar] [CrossRef]
- Subedi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Glob. Chang. Biol. 2013, 19, 505–516. [Google Scholar] [CrossRef]
- Garzón, M.B.; Robson, T.M.; Hampe, A. ΔTraitSDM: Species distribution models that account for local adaptation and phenotypic plasticity. New Phytol. 2019, 222, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed][Green Version]
- O’Neill, G.A.; Hamann, A.; Wang, T.L. Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. J. Appl. Ecol. 2008, 45, 1040–1049. [Google Scholar] [CrossRef]
- Noce, S.; Collalti, A.; Valentini, R.; Santini, M. Hot spot maps of forest presence in the Mediterranean basin. iForest Biogeosci. For. 2016, 9, 766–774. [Google Scholar] [CrossRef]
- Goberville, E.; Beaugrand, G.; Hautekèete, N.C.; Piquot, Y.; Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. Ecol. Evol. 2015, 5, 1100–1116. [Google Scholar] [CrossRef] [PubMed]
- Noce, S.; Collalti, A.; Santini, M. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 2017, 7, 9358–9375. [Google Scholar] [CrossRef] [PubMed]
- Pecchi, M.; Marchi, M.; Giannetti, F.; Bernetti, I.; Bindi, M.; Moriondo, M.; Maselli, F.; Fibbi, L.; Corona, P.; Travaglini, D.; et al. Reviewing climatic traits for the main forest tree species in Italy. iForest Biogeosci. For. 2019, 12, 173–180. [Google Scholar] [CrossRef][Green Version]
- Attorre, F.; Alfo, M.; De Sanctis, M.; Bruno, F. Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int. J. Climatol. 2007, 1843, 1825–1843. [Google Scholar] [CrossRef]
- Marchi, M.; Chiavetta, U.; Castaldi, C.; Ducci, F. Does complex always mean powerful? A comparison of eight methods for interpolation of climatic data in Mediterranean area. Ital. J. Agrometeorol. 2017, 1, 59–72. [Google Scholar]
- Azupura, M.; Dos Ramos, K. A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog. Electromagn. Res. M 2010, 14, 135–145. [Google Scholar] [CrossRef]
- Mbogga, M.S.; Hamann, A.; Wang, T. Historical and projected climate data for natural resource management in western Canada. Agric. For. Meteorol. 2009, 149, 881–890. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Molyneux, N.; Soares, I.; Neto, F. Modeling current and future climates using worldclim and diva software: case studies from Timor Leste and India. J. Crop Improv. 2014, 28, 619–640. [Google Scholar] [CrossRef]
- Vacchiano, G.; Motta, R. An improved species distribution model for Scots pine and downy oak under future climate change in the NW Italian Alps. Ann. For. Sci. 2015, 72, 321–334. [Google Scholar] [CrossRef]
- Schueler, S.; Falk, W.; Koskela, J.; Lefèvre, F.; Bozzano, M.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang. Biol. 2014, 20, 1498–1511. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Sayre, R.; Trabucco, A.; Zomer, R. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 2013, 22, 630–638. [Google Scholar] [CrossRef]
- Isaac-Renton, M.G.; Roberts, D.R.; Hamann, A.; Spiecker, H. Douglas-fir plantations in Europe: A retrospective test of assisted migration to address climate change. Glob. Chang. Biol. 2014, 20, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Campbell, E.M.; O’Neill, G.A.; Aitken, S.N. Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. For. Ecol. Manag. 2012, 279, 128–140. [Google Scholar] [CrossRef]
- The R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- KNMI Climate Explorer. Available online: https://climexp.knmi.nl (accessed on 21 April 2016).
- Deutscher Wetterdienst. Available online: ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany/climate/multi_annual/ (accessed on 13 April 2016).
- Hellenic National Meteorological Service. Available online: http://www.emy.gr/emy/en/ (accessed on 21 April 2016).
- National Meteorological Service of Slovenia. Available online: https://meteo.arso.gov.si/met/en/ (accessed on 21 April 2016).
- Swedish Meteorological and Hydrological Institute. Available online: http://www.smhi.se/klimatdata/meteorologi/temperatur/dataserier-med-normalvarden-1.7354 (accessed on 30 March 2016).
- Pebesma, E.J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 2004, 30, 683–691. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Zhang, X.; Wang, L. Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS ONE 2015, 10, e0120056. [Google Scholar] [CrossRef]
- Hamann, A.; Roberts, D.R.; Barber, Q.E.; Carroll, C.; Nielsen, S.E. Velocity of climate change algorithms for guiding conservation and management. Glob. Chang. Biol. 2015, 21, 997–1004. [Google Scholar] [CrossRef]
- Mairota, P.; Leronni, V.; Xi, W.; Mladenoff, D.J.; Nagendra, H. Using spatial simulations of habitat modification for adaptive management of protected areas: Mediterranean grassland modification by woody plant encroachment. Environ. Conserv. 2013, 41, 144–156. [Google Scholar] [CrossRef]
- Belda, M.; Holtanová, E.; Kalvová, J.; Halenka, T. Global warming-induced changes in climate zones based on CMIP5 projections. Clim. Res. 2016, 71, 17–31. [Google Scholar] [CrossRef][Green Version]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Wood, S.N. On confidence intervals for generalized additive models based on penalized regression splines. Aust. N. Z. J. Stat. 2006, 48, 445–464. [Google Scholar] [CrossRef]
- Fréjaville, T.; Fady, B.; Kremer, A.; Ducousso, A.; Garzón, M.B. Inferring phenotypic plasticity and local adaptation to climate across tree species ranges using forest inventory data. bioRxiv 2019, 1–34. [Google Scholar] [CrossRef]
- Ray, D.; Bathgate, S.; Moseley, D.; Taylor, P.; Nicoll, B.; Pizzirani, S.; Gardiner, B. Comparing the provision of ecosystem services in plantation forests under alternative climate change adaptation management options in Wales. Reg. Environ. Chang. 2015, 15, 1501–1513. [Google Scholar] [CrossRef]
- Bellucci, A.; Gualdi, S.; Masina, S.; Storto, A.; Scoccimarro, E.; Cagnazzo, C.; Fogli, P.; Manzini, E.; Navarra, A. Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim. Dyn. 2013, 40, 1483–1497. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 2006, 30, 751–777. [Google Scholar] [CrossRef][Green Version]
- Perdinan, P.; Winkler, J.A. Changing human landscapes under a changing climate: Considerations for climate assessments. Environ. Manag. 2014, 53, 42–54. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Jarvis, A. CIAT Decision and Policy Analysis Working Paper; CIAT: London, UK, 2010; p. 18. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Maca, P.; Pech, P. Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 3868519. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Svenning, J.C.; Fitzpatrick, M.C.; Normand, S.; Graham, C.H.; Pearman, P.B.; Iverson, L.R.; Skov, F. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography (Cop.) 2010, 33, 1070–1080. [Google Scholar] [CrossRef]
- Colantoni, A.; Ferrara, C.; Perini, L.; Salvati, L. Assessing trends in climate aridity and vulnerability to soil degradation in Italy. Ecol. Indic. 2015, 48, 599–604. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Blasi, C.; Chirici, G.; Corona, P.; Marchetti, M.; Maselli, F.; Puletti, N. Spazializzazione di dati climatici a livello nazionale tramite modelli regressivi localizzati. Forest 2007, 4, 213–219. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Falk, W.; Mellert, K.H. Species distribution models as a tool for forest management planning under climate change: Risk evaluation of Abies Alba in Bavaria. J. Veg. Sci. 2011, 22, 621–634. [Google Scholar] [CrossRef]
- Trivedi, M.R.; Berry, P.M.; Morecroft, M.D.; Dawson, T.P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Chang. Biol. 2008, 14, 1089–1103. [Google Scholar] [CrossRef][Green Version]
- Marchi, M.; Castaldi, C.; Merlini, P.; Nocentini, S.; Ducci, F. Stand structure and influence of climate on growth trends of a Marginal forest population of Pinus nigra spp. nigra. Ann. Silvic. Res. 2015, 39, 100–110. [Google Scholar]
- Ferrara, C.; Marchi, M.; Fares, S.; Salvati, L. Sampling strategies for high quality time-series of climatic variables in forest resource assessment. iForest Biogeosci. For. 2017, 10, 739–745. [Google Scholar] [CrossRef][Green Version]
- Way, R.G.; Oliva, F.; Viau, A.E. Underestimated warming of northern Canada in the Berkeley Earth temperature product. Int. J. Climatol. 2017, 37, 1746–1757. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Costa, A.C. Representativeness impacts on accuracy and precision of climate spatial interpolation in data-scarce regions. Meteorol. Appl. 2014, 22, 368–377. [Google Scholar] [CrossRef]
- Wong, D.W.; Yuan, L.; Perlin, S. A comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.J.; Brus, D.J.; Bunce, R.G.H.; Carey, P.D.; Gonçalves, J.; Honrado, J.P.; Jongman, R.H.G.; Trabucco, A.; Zomer, R. Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol. Indic. 2013, 33, 26–35. [Google Scholar] [CrossRef][Green Version]
- De Dato, G.; Teani, A.; Mattioni, C.; Marchi, M.; Monteverdi, M.C.; Ducci, F. Delineation of seed collection zones based on environmental and genetic characteristics for Quercus suber L. in Sardinia, Italy. iForest Biogeosci. For. 2018, 11, 651–659. [Google Scholar] [CrossRef]
- Bachmaier, M.; Backes, M. Variogram or Semivariogram? Variance or Semivariance? Allan Variance or Introducing a New Term? Math. Geosci. 2011, 43, 735–740. [Google Scholar] [CrossRef]
Country | Total Meteostations | MAT Records | MAP Records | Data Source |
---|---|---|---|---|
Albania | 3 | 3 | 3 | [39] |
Austria | 23 | 21 | 23 | |
Belgium | 9 | 9 | 9 | |
Bulgaria | 18 | 18 | 18 | |
Croatia | 1 | 1 | 1 | |
Czech | 20 | 19 | 20 | |
Denmark | 4 | 4 | 4 | |
Finland | 18 | 17 | 18 | |
France | 76 | 75 | 76 | |
Germany | 4825 | 719 | 4733 | [40] |
Greece | 26 | 25 | 26 | [41] |
Hungary | 9 | 9 | 9 | [39] |
Ireland | 6 | 6 | 6 | |
Italy | 30 | 30 | 30 | |
North Macedonia | 1 | 1 | 1 | |
Montenegro | 1 | 1 | 1 | |
Netherlands | 5 | 5 | 5 | |
Norway | 18 | 18 | 18 | |
Portugal | 18 | 18 | 18 | |
Slovakia | 14 | 14 | 14 | |
Slovenia | 42 | 42 | 42 | [42] |
Spain | 51 | 51 | 51 | [39] |
Sweden | 1391 | 604 | 1351 | [43] |
Switzerland | 12 | 11 | 12 | [39] |
United Kingdom | 38 | 38 | 37 | |
TOTAL | 6659 | 1759 | 6526 | |
MEAN | 266 | 70 | 261 | |
ST. DEV | 988.64 | 179.54 | 969.08 |
Country | Temperature | Precipitation | Country | Temperature | Precipitation |
---|---|---|---|---|---|
Albania | 0 | 7 | Latvia | 3 | 9 |
Andorra | 0 | 0 | Liechtenstein | 0 | 0 |
Armenia | 2 | 2 | Lithuania | 16 | 19 |
Austria | 3 | 25 | Luxembourg | 1 | 6 |
Belarus | 8 | 22 | North Macedonia | 7 | 7 |
Belgium | 3 | 18 | Malta | 1 | 3 |
Bosnia and Herz. | 7 | 10 | Moldova | 2 | 3 |
Bulgaria | 4 | 15 | Monaco | 0 | 0 |
Croatia | 13 | 13 | Montenegro | 5 | 2 |
Czech Republic | 7 | 16 | Netherlands | 7 | 10 |
Denmark | 19 | 41 | Norway | 8 | 54 |
Estonia | 3 | 12 | Poland | 18 | 63 |
Faeroe Islands | 1 | 1 | Portugal | 16 | 18 |
Finland | 19 | 32 | Romania | 11 | 28 |
France | 82 | 107 | Russia | 44 | 124 |
Georgia | 1 | 20 | San Marino | 0 | 0 |
Germany | 89 | 116 | Serbia | 23 | 12 |
Gibraltar | 0 | 1 | Slovakia | 3 | 10 |
Greece | 26 | 48 | Slovenia | 6 | 2 |
Guernsey | 0 | 0 | Spain | 60 | 117 |
Hungary | 8 | 20 | Sweden | 16 | 60 |
Ireland | 16 | 51 | Switzerland | 8 | 20 |
Isle of Man | 0 | 1 | Turkey | 513 | 548 |
Italy | 133 | 151 | Ukraine | 22 | 81 |
Jersey | 0 | 3 | UK | 29 | 188 |
Summary statistics | Temperature records | Precipitation records | |||
TOTAL | 1263 | 2116 | |||
MEAN | 25 | 42 | |||
SD | 74.86 | 84.89 |
Variable | AVR | SD | CV | MAX | MIN | ABSAVR |
---|---|---|---|---|---|---|
MAT [°C] | 0.22 | 1.50 | 6.82 | −10.62 | 13.21 | 0.76 |
MAP [mm] | −48.70 | 165.35 | 3.40 | −1578.10 | 950.80 | 98.56 |
Variable | Predictor | Intercept | Slope | Explained Variance | p-Value |
---|---|---|---|---|---|
MAT | Latitude | 0.29 | 0.000000 | 0.56% | 0.00092 |
Longitude | −0.34 | 0.000000 | 1.20% | 0.00000 | |
Elevation | 0.54 | −0.001025 | 4.95% | 0.00000 | |
ADF5NM | 0.09 | 0.000002 | 0.18% | 0.04138 | |
MAP | Latitude | −45.16 | 0.000014 | 0.05% | 0.04492 |
Longitude | −202.28 | 0.000061 | 4.33% | 0.00000 | |
Elevation | 8.15 | −0.206690 | 10.26% | 0.00000 | |
ADF5NM | −107.02 | 0.001059 | 1.61% | 0.00000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchi, M.; Sinjur, I.; Bozzano, M.; Westergren, M. Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate. Sustainability 2019, 11, 3043. https://doi.org/10.3390/su11113043
Marchi M, Sinjur I, Bozzano M, Westergren M. Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate. Sustainability. 2019; 11(11):3043. https://doi.org/10.3390/su11113043
Chicago/Turabian StyleMarchi, Maurizio, Iztok Sinjur, Michele Bozzano, and Marjana Westergren. 2019. "Evaluating WorldClim Version 1 (1961–1990) as the Baseline for Sustainable Use of Forest and Environmental Resources in a Changing Climate" Sustainability 11, no. 11: 3043. https://doi.org/10.3390/su11113043