Recycling of Communal Waste: Current State and Future Potential for Sustainable Development in the EU
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- Graphical analysis of communal waste production in EU countries and number of inhabitants: cartographer;
- Regression analysis of communal waste production in EU countries and the number of inhabitants;
- Graphical analysis of communal waste production in EU countries per inhabitant: cartographer;
- Distribution analysis of communal waste recycling;
- Analysis of variability of communal waste recycling according to countries: Kruskal–Wallis test;
- Summary analysis of production and recycling of the communal waste with regard to trends of development: basic index;
- Cluster analysis.
3.1. Correlation
- cov xy > 0: between X and Y exists positive linear dependence;
- cov xy < 0: between X and Y exists negative linear dependence;
- cov xy = 0: between X and Y exists no linear dependence.
- xi is variable x observed in time i,
- is athe rithmetic mean of variables x in time series,
- yi is variable y observed in time i,
- is the rithmetic mean of variables y in time series,
- n is sample size (number of time series examined).
0 < |r| < 0.3 | low level of dependence among variables, |
0.3 ≤ |r| < 0.5 | moderate level of dependence among variables, |
0.5 ≤ |r| < 0.7 | medium level of dependence among variables, |
0.7 ≤ |r| < 1 | strong level of dependence among variables. |
- y is the dependent variable,
- x is the independent variable,
- β0 is the model parameter, so-called localization constant, expressing what value will have Y in case X will equal zero,
- β1 is the model parameter, the so-called regression coefficient, expressing the slope of the regression line. The parameter informs by how many units y will change averagely if x will change by one unit.
- β1 > 0: positive dependence
- β1 < 0: negative dependence
3.2. Distribution Analysis
3.3. Kruskal–Wallis Test
3.4. Cluster Analysis
- is the total diameter of the sth cluster,
- is the value of the sth cluster for the ith variable.
- Partial analysis of data was realized by the statistical software JMP.
4. Results and Discussion
- the red cluster presents countries with a medium creation of communal waste and with a high measure of recycling,
- the green cluster presents countries with a low creation of communal waste and medium measure of recycling,
- the blue cluster presents countries with a low creation of communal waste and low measure of recycling,
- the brown cluster presents countries with a high creation of communal waste and average or high measure of recycling.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brzeszczak, A.; Imiołczyk, J. Ratio analysis of Poland’s sustainable development compared to the countries of the European Union. Acta Oeconomica Univ. Selye 2016, 5, 31–41. [Google Scholar]
- Čech, J. Ekonomický ras a zhnehodnocovanie životného prostredia. Acta Montan. Slovaca 2007, 12, 194–204. [Google Scholar]
- Adamisin, P.; Kotulic, R.; Mura, L.; Kravcakova Vozarova, I.; Vavrek, R. Managerial approaches of environmental projects: An empirical study. Pol. J. Manag. Stud. 2018, 17, 27–38. [Google Scholar] [CrossRef]
- Europe 2020 Strategy. Available online: https://ec.europa.eu/info/business-economy-euro/economic-and-fiscal-policy-coordination/eu-economic-governance-monitoring-prevention-correction/european-semester/framework/europe-2020-strategy_en (accessed on 11 March 2019).
- Living Well, within the Limits of Our Planet. Available online: http://ec.europa.eu/environment/pubs/pdf/factsheets/7eap/en.pdf (accessed on 11 March 2019).
- 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en (accessed on 11 March 2019).
- OECD Annual Report. Available online: https://www.oecd.org/newsroom/43125523.pdf (accessed on 12 January 2018).
- Waste Brochure. Available online: http://ec.europa.eu/environment/waste/pdf/WASTE%20BROCHURE.pdf (accessed on 13 March 2019).
- Circular Economy Strategy. Available online: http://ec.europa.eu/environment/circular-economy/index_en.htm (accessed on 20 November 2018).
- Odpady-Obaly: Waste and Packages. Available online: http://www.minzp.sk/sekcie/temy-oblasti/europska-unia-zivotne-prostredie/oblasti/odpady-obaly/ (accessed on 1 September 2018).
- Directive 2008/98/EC on Waste (Waste Framework Directive). Available online: http://ec.europa.eu/environment/waste/framework/ (accessed on 25 November 2018).
- Saita, M.; Francesschelli, M.V. The role of waste management in the green economy: An empirical analysis of economic data of the business. Sustain. Entrep. Invest. Green Econ. 2016, 1, 169–199. [Google Scholar]
- Troschinetz, A.M.; Mihelcic, J.R. Sustainable recycling of municipal solid waste in developing countries. Waste Manag. 2009, 29, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Odpadové Hospodárstvo EU. Available online: https://envipak.sk/clanok/Odpadove-hospodarstvo-EU-Slovensko-takmer-na-chvoste (accessed on 5 May 2019).
- Wilts, H.; von Gries, N.; Bahn-Walkowiak, B. From Waste Management to Resource Efficiency—The Need for Policy Mixes. Sustainability 2016, 8, 622. [Google Scholar] [CrossRef]
- Price, J.L.; Joseph, J.B. Demand management—A basis for waste policy: A critical review of the applicability of the waste hierarchy in terms of achieving sustainable waste management. Sustain. Dev. 2000, 8, 96–105. [Google Scholar] [CrossRef]
- Van Ewijk, S.; Stegemann, J.A. Limitations of the waste hierarchy for achieving absolute reductions inmaterial throughput. J. Clean. Prod. 2017, 132, 122–128. [Google Scholar] [CrossRef]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hilier, G. Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef]
- Šebo, J. Riadenie odpadového hodpodárstva v malom podniku s podporou modelu ekonomickej bilancie toku odpadov. Acta Fac. Ecol. 2012, 26, 47–54. [Google Scholar]
- Zhuonan, S. Research on guarantee mechanism of waste concrete recycling logistics mode in Beijing city. In Proceedings of the 2015 International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, Spain, 27–29 July 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Iacoboae, C.; Luca, O.; Petrescu, F. An analysis of Romania’s municipal waste within the European context. Theor. Empir. Res. Urban Manag. 2013, 8, 73–84. [Google Scholar]
- Magringho, A.; Didelet, F.; Semiao, V. Municipal solid waste disposal in Portugal. Waste Manag. 2006, 26, 1477–1489. [Google Scholar] [CrossRef]
- Powell, J.T.; Townsend, T.G.; Zimmerman, J.B. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat. Clim. Chang. 2016, 6, 162–165. [Google Scholar] [CrossRef]
- Shaddick, G.; Ranzi, A.; Thomas, M.L.; Aglurre-Perez, R.; Bekker-Nielsen Dunbar, M.; Parmagnani, F.; Martuzzi, M. Towards an assessment of the health impact of industrially contaminated sites: Waste landfills in Europe. Epidemiol. Prev. 2018, 42, 69–75. [Google Scholar] [PubMed]
- Jaiswal, A.K.; Satheesh, T.A.; Pandey, K.; Kumar, P.; Saran, S. Geospatial Multi-criteria Decision Based Site Suitability Analysis for Solid Waste Disposal Using Topsis Algorithm. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 431–438. [Google Scholar] [CrossRef]
- Andersen, M.S. An introductory note on the environmental economics of the circular economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Hazra, T.; Goel, S. Solid waste management in Kolkata, India: Practices and challenges. Waste Manag. 2009, 29, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Minoglou, M.; Komilis, D. Optimizing the treatment and disposal of municipal solid wastes using mathematical programming–A case study in a Greek region. Resour. Conserv. Recycl. 2013, 80, 46–57. [Google Scholar] [CrossRef]
- Badran, M.F.; El-Haggar, S.M. Optimization of municipal solid waste management in Port Said–Egypt. Waste Manag. 2006, 26, 534–545. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, Y.; Dong, J.; Chi, Y.; Ni, M.; Li, N.; Zhang, Y. Environmental performance evolution of municipal solid waste management by life cycle assessment in Hangzhou, China. J. Environ. Manag. 2018, 227, 23–33. [Google Scholar] [CrossRef]
- Bajić, B.Z.; Dodić, S.N.; Vučurović, D.G.; Dodić, J.M.; Grahovac, J.A. Waste-to-energy status in Serbia. Renew. Sustain. Energy Rev. 2015, 50, 1437–1444. [Google Scholar]
- Schneider, P.; Folkens, L.; Meyer, A.; Fauk, T. Sustainability and Dimensions of a Nexus Approach in a Sharing Economy. Sustainability 2019, 11, 909. [Google Scholar] [CrossRef]
- Aguilar-Hernandez, G.A.; Sigüenza-Sanchez, C.P.; Donati, F.; Rodrigues, J.F.D.; Tukker, A. Assessing circularity interventions: A review of EEIOA based studies. J. Econ. Struct. 2018, 7, 1–24. [Google Scholar] [CrossRef]
- Pearce, D. Green Economics. Environ. Values 1992, 1, 3–13. [Google Scholar] [CrossRef]
- Abreu, M.C.S.; Ceglia, D. On the implementation of a circular economy: The role of institutional capacity-building through industrial symbiosis. Resour. Conserv. Recycl. 2018, 138, 99–109. [Google Scholar] [CrossRef]
- Horvath, B.; Mallinguh, E.; Fogarassy, C. Designing Business Solutions for Plastic Waste Management to Enhance Circular Transitions in Kenya. Sustainability 2018, 10, 1664. [Google Scholar] [CrossRef]
- Rudolph, N.; Kiesel, R.; Aumnate, C. Plastic Waste of the World: Increasing Potential of Recycling. Understanding Plastics Recycling; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2017; pp. 87–102. [Google Scholar]
- Linder, M.; Williander, M. Circular business model innovation: Inherent Uncertainties. Bus. Strategy Environ. 2017, 26, 182–196. [Google Scholar] [CrossRef]
- Martinico-Perez, M.F.G.; Schandl, H.; Tanikawa, H. Sustainability indicators from resource flow trends in the Philippines. Resour. Conserv. Recycl. 2018, 138, 74–86. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Jopson, J.S. Making the business case for resource recovery. Sci. Total Environ. 2018, 648, 1031–1041. [Google Scholar] [CrossRef]
- Costa, I.; Massard, G.; Agarwal, A. Waste management policies for industrial symbiosis development: Case studies in European countries. J. Clean. Prod. 2010, 18, 815–822. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 10 April 2019).
- D’Agostino, R.; Stephens, M.A. Goodness of Fit Techniques; Marcel Dekker: New York, NY, USA, 1986. Available online: http://www.gbv.de/dms/ilmenau/toc/04207259X.PDF/ (accessed on 11 January 2017).
- MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; MacFarland, T.W., Yates, J.M., Eds.; Springer: Berlin, Germany, 2016; pp. 177–211. [Google Scholar]
- Meloun, M.; Militký, J.; Hill, M. Statistická Analýza Vícerozměrných dat v Příkladech; Academia: Praha, Czech Republic, 2012; 756p. [Google Scholar]
- Hebák, P.; Hustopecký, J.; Pecáková, I.; Plašil, M.; Prúša, M.; Řezanková, H.; Vlach, P.; Svobodová, A. Vícerozměrné Statistické Metody 3; Informatorium: Praha, Czech Republic, 2007; 256p. [Google Scholar]
- Indicators–Eurostat. Available online: https://ec.europa.eu/eurostat/web/waste/indicators (accessed on 20 November 2019).
- Topics-Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/topics (accessed on 2 December 2018).
- Fuldauer, L.I.; Ives, M.C.; Adshead, D.; Thacker, S.; Hall, J.W. Participatory planning of the future of waste management in small island developing states to deliver on the Sustainable Development Goals. J. Clean. Prod. 2019, 223, 147–162. [Google Scholar] [CrossRef]
- Seadon, J.K. Sustainable waste management systems. J. Clean. Prod. 2010, 18, 1639–1651. [Google Scholar] [CrossRef]
- Heidari, R.; Yazdanparast, R.; Jabbarzadeh, A. Sustainable design of a municipal solid waste management system considering waste separators: A real-world application. Sustain. Cities Soc. 2019, 47, 101457. [Google Scholar] [CrossRef]
- Towards A Circular Economy: Business Rationale For An Accelerated Transition. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/TCE_Ellen-MacArthur-Foundation-9-Dec-2015.pdf (accessed on 29 June 2017).
- Ardolino, F.; Lodato, C.; Astrup, T.F.; Arena, U. Energy recovery from plastic and biomass waste by means of fluidized bed gasification: A life cycle inventory model. Energy 2018, 165, 299–314. [Google Scholar] [CrossRef]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Zou, D.; Fu, C.; Huang, Q.; Ni, M. Comparison of municipal solid waste treatment Technologies form a life cycle perspective in China. Waste Manag. Res. 2014, 32, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Schüch, A.; Morscheck, G.; Lemke, A.; Nelles, M. Bio-Waste recycling in Germany–Further challenges. Compost Sci. Util. 2017, 25, S53–S60. [Google Scholar]
- Nayal, F.S.; Mammadov, A.; Ciliz, N. Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. J. Environ. Manag. 2016, 184, 389–399. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taušová, M.; Mihaliková, E.; Čulková, K.; Stehlíková, B.; Tauš, P.; Kudelas, D.; Štrba, Ľ. Recycling of Communal Waste: Current State and Future Potential for Sustainable Development in the EU. Sustainability 2019, 11, 2904. https://doi.org/10.3390/su11102904
Taušová M, Mihaliková E, Čulková K, Stehlíková B, Tauš P, Kudelas D, Štrba Ľ. Recycling of Communal Waste: Current State and Future Potential for Sustainable Development in the EU. Sustainability. 2019; 11(10):2904. https://doi.org/10.3390/su11102904
Chicago/Turabian StyleTaušová, Marcela, Eva Mihaliková, Katarína Čulková, Beáta Stehlíková, Peter Tauš, Dušan Kudelas, and Ľubomír Štrba. 2019. "Recycling of Communal Waste: Current State and Future Potential for Sustainable Development in the EU" Sustainability 11, no. 10: 2904. https://doi.org/10.3390/su11102904
APA StyleTaušová, M., Mihaliková, E., Čulková, K., Stehlíková, B., Tauš, P., Kudelas, D., & Štrba, Ľ. (2019). Recycling of Communal Waste: Current State and Future Potential for Sustainable Development in the EU. Sustainability, 11(10), 2904. https://doi.org/10.3390/su11102904