Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Inland Valleys Surveys
2.3. Spatial Datasets
2.4. Data Analysis
2.4.1. Drought Trends, Duration and Frequency
2.4.2. Random Forest Analysis for Identification of Drought Predictors
2.4.3. Logistic Regression for Assessing Determinants of Rice Farmers Commitment to Use Drought Mitigation Measures
3. Results
3.1. Spatial Variation of Drought Severity
3.2. Predictors of Drought Occurrence in Inland Valley Rice-Based Production System
3.3. Drought Mitigation Measures in Inland Valleys Rice-Based Production System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diagne, A.; Amovin-Assagba, E.; Futakuchi, K.; Wopereis, M.C.S. Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In Realizing Africa’s Rice Promise; Wopereis, M., Jonhson, D., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; 2013; pp. 35–45. ISBN 978-1-84593-812-3. [Google Scholar]
- Seck, P.A.; Touré, A.; Coulibaly, J.Y.; Diagne, A.; Wopereis, M.C.S. Africa’ s Rice Economy Before and After the 2008 Rice Crisis. In Realizing Africa’s Rice Promise; Wopereis, M., Jonhson, D., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CAB International: Wallingford, UK, 2013; pp. 24–34. [Google Scholar]
- Index-Mundi 2016. Available online: http://www.indexmundi.com (accessed on 15 November 2016).
- Serraj, R.; McNally, K.L.; Slamet-Loedin, I.; Kohli, A.; Haefele, S.M.; Atlin, G.; Kumar, A. Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy. Plant Prod. Sci. 2011, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing rice productivity in sub-Saharan Africa: challenges and opportunities. Adv. Agron. 2007, 94, 55–133. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2011, 369, 117–136. [Google Scholar] [CrossRef] [PubMed]
- Delaney, S.; Livingston, G.; Schonberger, S. Right place, right time: Increasing the effectiveness of agricultural development support in sub-Saharan Africa. South African J. Int. Aff. 2011, 18, 341–356. [Google Scholar] [CrossRef]
- Niang, A.; Becker, M.; Ewert, F.; Dieng, I.; Gaiser, T.; Tanaka, A.; Senthilkumar, K.; Rodenburg, J.; Johnson, J.M.; Akakpo, C.; et al. Variability and determinants of yields in rice production systems of West Africa. F. Crop. Res. 2017, 207, 1–12. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Brüggemann, N.; Ampofo, E.; Igue, A.M.; Jesse, N.; Huat, J.; Agbossou, E.K. Combining no-tillage, rice straw mulch and nitrogen fertilizer application to increase the soil carbon balance of upland rice field in northern Benin. Soil Tillage Res. 2016, 163, 152–159. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.M.P. (Eds.) IPCC Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. ISBN 9781107661820. [Google Scholar]
- Haefele, S.M.; Nelson, A.; Hijmans, R.J. Soil quality and constraints in global rice production. Geoderma 2014, 235–236, 250–259. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 2015, 526, 3–14. [Google Scholar] [CrossRef]
- Kiepe, P. Characterization of three key environments for integrated irrigation–aquaculture and their local names. In Integrated Irrigation and Aquaculture in West Africa: Concepts, Practices and Potential; Halwart, M., van Dam, A., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; pp. 1–5. [Google Scholar]
- Rodenburg, J.; Zwart, S.J.; Kiepe, P.; Narteh, L.T.; Dogbe, W.; Wopereis, M.C.S. Sustainable rice production in African inland valleys: Seizing regional potentials through local approaches. Agric. Syst. 2014, 123, 1–11. [Google Scholar] [CrossRef]
- Haefele, S.M.; Bouman, B.A.M. Drought-prone rainfed lowland rice in Asia: limitations and management options. Drought Front. Rice 2009, 211–232. [Google Scholar] [CrossRef]
- Ward, P.S.; Makhija, S. New modalities for managing drought risk in rainfed agriculture: Evidence from a discrete choice experiment in Odisha, India. World Dev. 2018, 107, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Djagba, J.F.; Rodenburg, J.; Zwart, S.J.; Houndagba, C.J.; Kiepe, P. Failure and success factors of irrigation systems developments: A case study from the Oueme and Zou valleys in Benin. Irrig. Drain. 2014, 63, 328–339. [Google Scholar] [CrossRef]
- Haefele, S.; Mussgnug, F.; Saito, K.; Nelson, A.; N’Diaye, K.; Wopereis, M. Increasing rice productivity through improved nutrient use in Africa. In Realizing Africa’s Rice Promise; Wopereis, M., Jonhson, D., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CAB International: Wallingford, UK, 2013; pp. 250–264. ISBN 1845938127. [Google Scholar]
- Van Oort, P.A.J. Mapping abiotic stresses for rice in Africa: Drought, cold, iron toxicity, salinity and sodicity. F. Crop. Res. 2018, 219, 55–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Development Core Team R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2011; Available online: www.R-project.org/ (accessed on 19 December 2016).
- Hermann, S.; Welsch, M.; Segerstrom, R.E.; Howells, M.I.; Young, C.; Alfstad, T.; Rogner, H.H.; Steduto, P. Climate, land, energy and water (CLEW) interlinkages in Burkina Faso: An analysis of agricultural intensification and bioenergy production. Nat. Resour. Forum 2012, 36, 245–262. [Google Scholar] [CrossRef]
- Baudron, A.R.; Needle, C.L.; Rijnsdorp, A.D.; Tara Marshall, C. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob. Chang. Biol. 2014, 20, 1023–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossou-Yovo, E.R.; Baggie, I.; Djagba, J.F.; Zwart, S.J. Diversity of inland valleys and opportunities for agricultural development in Sierra Leone. PLoS ONE 2017, 12, e0180059. [Google Scholar] [CrossRef] [PubMed]
- Windmeijer, P.; Andriesse, W. Inland Valleys in West Africa: An Agro-ecological Characterization of Rice Growing Environments; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1993. [Google Scholar]
- Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Stackhouse, P. Prediction of Worldwide Energy Resources. Available online: http://power.larc.nasa.gov (accessed on 18 November 2016).
- Beguería, S. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 3023, 3001–3023. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Garson, G.D. Fundamentals of Hierarchical Linear and Multilevel Modeling; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2012; ISBN 1412998859. [Google Scholar]
- Bachmair, S.; Kohn, I.; Stahl, K. Exploring the link between drought indicators and impacts. Nat. Hazards Earth Syst. Sci. 2015, 15, 1381–1397. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Kohn, I.; Tallaksen, L.M.; Stahl, K. Modeling drought impact occurrence based on meteorological drought indices in Europe. J. Hydrol. 2015, 530, 37–50. [Google Scholar] [CrossRef]
- Olsson, L.; Eklundh, L.; Ardö, J. A recent greening of the Sahel—Trends, patterns and potential causes. J. Arid Environ. 2005, 63, 556–566. [Google Scholar] [CrossRef]
- Mohino, E.; Janicot, S.; Bader, J. Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim. Dyn. 2011, 37, 419–440. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Djagba, J.F.; Sintondji, L.O.; Kouyaté, A.M.; Baggie, I.; Agbahungba, G.; Hamadoun, A.; Zwart, S.J. Predictors determining the potential of inland valleys for rice production development in West Africa. Appl. Geogr. 2018, 96, 86–97. [Google Scholar] [CrossRef]
- Yegbemey, R.N.; Yabi, J.A.; Tovignan, S.D.; Gantoli, G.; Haroll Kokoye, S.E. Farmers’ decisions to adapt to climate change under various property rights: A case study of maize farming in northern Benin (West Africa). Land Use Policy 2013, 34, 168–175. [Google Scholar] [CrossRef]
- Fenske, J. Land tenure and investment incentives: Evidence from West Africa. J. Dev. Econ. 2011, 95, 137–156. [Google Scholar] [CrossRef]
- Villamor, G.B.; Van Noordwijk, M.; Djanibekov, U.; Chiong-Javier, M.E.; Catacutan, D. Gender differences in land-use decisions: Shaping multifunctional landscapes? Curr. Opin. Environ. Sustain. 2014, 6, 128–133. [Google Scholar] [CrossRef]
- Dossou-Yovo, E.R.; Kouyaté, A.M.; Sawadogo, T.; Ouédraogo, I.; Bakare, O.S.; Zwart, S.J. A geospatial database of drought occurrence in inland valleys in Mali, Burkina Faso and Nigeria. Data Br. 2018, 19, 2008–2014. [Google Scholar] [CrossRef] [PubMed]
Variables | Scale Type | Scale Class | Source of Data |
---|---|---|---|
Theme 1: Farmers’ experience with drought in the last 10 years | |||
Occurrence of drought | nominal | Yes, no | Survey |
Frequency of drought events | ordinal | Every year, every 2 or 3 years, every 4 or 5 years, more than every 5 years | Survey |
Frequency of entire rice harvest loss | ordinal | All years, in 1 to 2 years, in 3 to 6 years, in 7 to 9 years, never | Survey |
Frequency of rice yield reduction | ordinal | All years, in 1 to 2 years, in 3 to 6 years, in 7 to 9 years, never | Survey |
Theme 2: Mitigation measures of rice farmers against drought | |||
Use of drought resistant varieties | nominal | Yes, no | Survey |
Change in cultivation areas | nominal | Yes, no | Survey |
Investment in irrigation facilities | nominal | Yes, no | Survey |
Change in cropping seasons | nominal | Yes, no | Survey |
Others | nominal | Yes, no | Survey |
Theme 3: Physical characteristics | |||
Inland valley size (ha) | numeric | - | SRTM a |
Average width (m) | numeric | - | SRTM |
Cross-sectional shape | nominal | Convex, concave, flat | Survey |
Particle size distribution (%) | numeric | - | AfSIS b |
Soil organic carbon (%) | numeric | - | AfSIS |
Daily minimum temperature from 1995 to 2014 | numeric | - | POWER database |
Daily maximum temperature from 1995 to 2014 | numeric | - | POWER database |
Daily rainfall from 1995 to 2014 | numeric | - | POWER database |
Average annual standardized precipitation evapotranspiration index | numeric | - | Authors computation |
Duration of drought | numeric | - | Authors computation |
Frequency of drought | numeric | - | Authors computation |
Theme 4: Hydrology | |||
Water source | nominal | Spring, river, other | Survey |
Flooding regime | ordinal | Sporadic, seasonal, permanent | Survey |
Duration of flooding (week) | numeric | - | Survey |
Duration of emerging water table (week) | numeric | - | Survey |
Number of weeks when groundwater table is within 50 cm from the soil surface (week) | numeric | - | Survey |
Drainage/irrigation infrastructure | nominal | No drainage, canals for drainage and/or irrigation | Survey |
Flow accumulation | numeric | - | SRTM |
Theme 5: Management practices | |||
Rice varieties | nominal | Local, improved, or both | Survey |
Soil fertility management | nominal | No fertilizer, mineral, or both (mineral +organic fertilizers) | Survey |
Bunds | nominal | No bunding, simple bunding, contour bunds | Survey |
Theme 6: Socio-economic characteristics | |||
Distance to road and distance to market (km) | numeric | - | Survey |
Quality of road to market | nominal | No road, path, dirt road, paved road | Survey |
Land ownership | nominal | Individual, family, village, state | Survey |
Origin of inland valley users | nominal | Native, migrant | Survey |
Percentage of women in the inland valleys (%) | numeric | - | Survey |
Mode of exploitation | nominal | Individual, collective, both | Survey |
Source of seeds and other agricultural inputs | ordinal | In the village, at <25 km, 25–50 km, 51–100 km, >100 km | Survey |
Support from institution | nominal | Yes, no | Survey |
Affiliation with farmers’ organization | nominal | Yes, no | Survey |
Role of rice farming in production system | nominal | Main activity, secondary major activity, marginal activity | Survey |
Categories | SPEI Values |
---|---|
Extreme dryness | Less than −2 |
Severe dryness | −1.99 to −1.5 |
Moderate dryness | −1.49 to −1.0 |
Near normal | −1.0 to 1.0 |
Moderate wetness | 1.0 to 1.49 |
Severe wetness | 1.50 to 1.99 |
Extremely wetness | More than 2 |
Cluster | Average Annual SPEI | Duration of Water Flow (Week) | Average Annual Temperature (°C) | Bunding | Duration of Shallow Aquifer (Week) | Duration of Dry Period (Month) | Percentage of IV Affected by Drought (%) |
---|---|---|---|---|---|---|---|
Cluster 1 | 0.06 ± 0.00 | 38 ± 2 | 28.5 ± 0.1 | Bund (74%) | 19 ± 1 | 6 ± 0.1 | 0 |
Cluster 2 | 0.03 ± 0.01 | 52 ± 0 | 26.6 ± 0.1 | Bund (11%) | 19 ± 3 | 6 ± 0.3 | 11 |
Cluster 3 | −0.02 ± 0.01 | 52 ± 0 | 28.3 ± 0.1 | Bund (100%) | 12 ± 3 | 6 ± 0.6 | 78 |
Cluster 4 | 0.06 ± 0.01 | 15 ± 1 | 28.8 ± 0.1 | Bund (100%) | 18 ± 3 | 6 ± 0.4 | 19 |
Cluster 5 | 0.03 ± 0.00 | 9 ± 1 | 29.2 ± 0.1 | Bund (29%) | 17 ± 6 | 6 ± 0.6 | 14 |
Cluster 6 | −0.03 ± 0.00 | 19 ± 2 | 28.5 ± 0.1 | Bund (100%) | 12 ± 2 | 7 ± 0.5 | 90 |
Cluster 7 | −0.04 ± 0.01 | 21 ± 1 | 28.3 ± 0.1 | Bund (0%) | 11 ± 1 | 7 ± 0.3 | 92 |
SED | 0.02 | 3.5 | 0.18 | - | 8 | 1.1 | - |
p value | <0.001 | <0.001 | <0.001 | - | 0.003 | 0.02 | - |
Variables | Crop Diversification | Farming Practices | Land Use Measures | |||
---|---|---|---|---|---|---|
Coefficient | P > z | Coefficient | P > z | Coefficient | P > z | |
Distance to road | 0.024 (0.08) | 0.770 | 0.114 (0.09) | 0.236 | 0.193 (0.09) ** | 0.042 |
Percentage of women | 0.005 (0.008) * | 0.051 | 0.006 (0.01) * | 0.067 | 0.017 (0.01) ** | 0.044 |
Mode of exploitation | 0.534 (0.56) | 0.344 | 0.778 (0.58) | 0.179 | 0.780 (0.57) | 0.168 |
Role of rice farming in production system | 1.694 (0.60) *** | 0.005 | 0.394 (0.55) | 0.477 | 0.990 (0.56) * | 0.076 |
Distance from IV to market | −0.033 (0.09) | 0.699 | −0.081 (0.09) | 0.382 | −0.029 (0.08) | 0.729 |
Support from institution | −0.290 (0.62) | 0.640 | 0.177 (0.61) | 0.771 | 0.993 (0.64) | 0.121 |
Source of seed | −0.695 (2.09) | 0.740 | −14.191 (0.67) *** | 0.000 | 14.034 (0.77) *** | 0.000 |
Source of other input | 0.364 (1.28) | 0.776 | −0.308 (1.10) | 0.779 | 1.420 (1.36) | 0.297 |
Origin of IV users | 0.571 (0.62) | 0.358 | 1.390 (0.66) ** | 0.034 | −0.117 (0.66) | 0.860 |
Land ownership | 0.026 (0.61) * | 0.070 | 0.813 (0.62) * | 0.093 | 0.768 (0.63) ** | 0.020 |
Affiliation with farmers’ organization | 1.327 (0.59) ** | 0.020 | 1.243 (0.57) ** | 0.028 | 0.030 (0.54) | 0.960 |
Log likelihood = −112.02 LR chi2 = 134.60 Prob > chi2 = 0.04 ** | Log likelihood = −88.12 LR chi2 = 13.01 Prob > chi2 = 0.05 ** | Log likelihood = −63.59 LR chi2 = −20.84 Prob > chi2 = 0.08 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dossou-Yovo, E.R.; Zwart, S.J.; Kouyaté, A.; Ouédraogo, I.; Bakare, O. Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone. Sustainability 2019, 11, 79. https://doi.org/10.3390/su11010079
Dossou-Yovo ER, Zwart SJ, Kouyaté A, Ouédraogo I, Bakare O. Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone. Sustainability. 2019; 11(1):79. https://doi.org/10.3390/su11010079
Chicago/Turabian StyleDossou-Yovo, Elliott R., Sander J. Zwart, Amadou Kouyaté, Ibrahima Ouédraogo, and Oladele Bakare. 2019. "Predictors of Drought in Inland Valley Landscapes and Enabling Factors for Rice Farmers’ Mitigation Measures in the Sudan-Sahel Zone" Sustainability 11, no. 1: 79. https://doi.org/10.3390/su11010079