Patch-Based Assessments of Shifting Cultivation Detected by Landsat Time Series Images in Myanmar
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Maps of Disturbance and Disturbance Agents
2.3. Accuracy Assessments
2.4. Patch-Based Characteristics
3. Results
3.1. Accuracy Assessments
3.2. Patch-Based Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mertz, O.; Padoch, C.; Fox, J.; Cramb, R.A.; Leisz, S.J.; Lam, N.T.; Vien, T.D. Swidden Change in Southeast Asia: Understanding Causes and Consequences. Hum. Ecol. 2009, 37, 259–264. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z.; Jiang, L.; Liao, C.; Zhang, J. A review of swidden agriculture in Southeast Asia. Remote Sens. 2014, 6, 1654–1683. [Google Scholar] [CrossRef]
- Houghton, R.A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S.; et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Glob. Environ. Chang. 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Fox, J.; Fujita, Y.; Ngidang, D.; Peluso, N.; Potter, L.; Sakuntaladewi, N.; Sturgeon, J.; Thomas, D. Policies, Political-Economy, and Swidden in Southeast Asia. Hum. Ecol. 2009, 37, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Heinimann, A.; Mertz, O.; Frolking, S.; Christensen, A.E.; Hurni, K.; Sedano, F.; Chini, L.P.; Sahajpal, R.; Hansen, M.; Hurtt, G. A global view of shifting cultivation: Recent, current, and future extent. PLoS ONE 2017, 12, e0184479. [Google Scholar] [CrossRef] [PubMed]
- Padoch, C.; Pinedo-Vasquez, M. Saving Slash-and-Burn to Save Biodiversity. Biotropica 2010, 42, 550–552. [Google Scholar] [CrossRef]
- Finegan, B.; Nasi, R. The biodiversity and conservation potential of shifting cultivation landscapes. In Agroforestry and Biodiversity Conservation in Tropical Landsacapes; Schroth, G., Da Fonseca, G.A., Harvey, C.A., Gascon, C., Vasconcelos, H.L., Izac, A.M.N., Eds.; Island Press: Washington, DC, USA, 2004; pp. 153–197. [Google Scholar]
- Mukul, S.A.; Herbohn, J.; Firn, J. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks. Sci. Rep. 2016, 6, 22483. [Google Scholar] [CrossRef] [PubMed]
- De Sy, V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J. Synergies of multiple remote sensing data sources for REDD+ monitoring. Curr. Opin. Environ. Sustain. 2012, 4, 696–706. [Google Scholar] [CrossRef]
- Molinario, G.; Hansen, M.C.; Potapov, P.V. Forest cover dynamics of shifting cultivation in the Democratic Republic of Congo: A remote sensing-based assessment for 2000–2010. Environ. Res. Lett. 2015, 10, 094009. [Google Scholar] [CrossRef]
- Molinario, G.; Hansen, M.C.; Potapov, P.V.; Tyukavina, A.; Stehman, S.; Barker, B.; Humber, M. Quantification of land cover and land use within the rural complex of the Democratic Republic of Congo. Environ. Res. Lett. 2017, 12, 104001. [Google Scholar] [CrossRef]
- Frolking, S.; Palace, M.W.; Clark, D.B.; Chambers, J.Q.; Shugart, H.H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2009, 114, G00E02. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, S.; Okada, K.; Nishio, S.; Kitayama, K. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images. ISPRS J. Photogramm. Remote Sens. 2016, 119, 280–293. [Google Scholar] [CrossRef]
- Inoue, Y.; Kiyono, Y.; Asai, H.; Ochiai, Y.; Qi, J.; Olioso, A.; Shiraiwa, T.; Horie, T.; Saito, K.; Dounagsavanh, L. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 287–297. [Google Scholar] [CrossRef]
- Liao, C.; Feng, Z.; Li, P.; Zhang, J. Monitoring the spatio-temporal dynamics of swidden agriculture and fallow vegetation recovery using Landsat imagery in northern Laos. J. Geogr. Sci. 2015, 25, 1218–1234. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z. Extent and Area of Swidden in Montane Mainland Southeast Asia: Estimation by Multi-Step Thresholds with Landsat-8 OLI Data. Remote Sens. 2016, 8, 44. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef]
- Dutrieux, L.P.; Jakovac, C.C.; Latifah, S.H.; Kooistra, L. Reconstructing land use history from Landsat time-series. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 112–124. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Dutrieux, L.P.; Siti, L.; Peña-Claros, M.; Bongers, F. Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLoS ONE 2017, 12, e0181092. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Kanzaki, M.; Hla Maung, T.; Yazar, M. Recovery process of fallow vegetation in the Traditional Karen Swidden Cultivation System in the Bago Mountain Range, Myanmar. Southeast Asian Stud. 2007, 45, 317–333. [Google Scholar]
- Takeda, S.; Suzuki, R.; Thein, H.M. Mapping Shifting Cultivation Fields in a Karen Area of the Bago Mountains, Myanmar. Southeast Asian Stud. 2007, 45, 334–342. [Google Scholar] [CrossRef]
- Kosaka, Y.; Takeda, S. Underground biomass accumulation of two economically important non-timber forest products is influenced by ecological settings and swiddeners’ management in the Bago Mountains, Myanmar. For. Ecol. Manag. 2017, 404, 330–337. [Google Scholar] [CrossRef]
- Suzuki, R.; Takeda, S.; Thein, H.M. Analysis of Land Use History and Fallow Vegetation Recovery: A Case Study of Shifting Cultivation by the Karen in the Bago Mountains, Myanmar. Southeast Asian Stud. 2007, 45, 343–358. [Google Scholar]
- Chan, N.; Takeda, S.; Suzuki, R.; Yamamoto, S. Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar. For. Ecol. Manag. 2013, 304, 427–436. [Google Scholar] [CrossRef]
- Chan, N.; Takeda, S.; Suzuki, R.; Yamamoto, S. Assessment of biomass recovery and soil carbon storage of fallow forests after swidden cultivation in the Bago Mountains, Myanmar. New For. 2016, 47, 565–585. [Google Scholar] [CrossRef]
- Shimizu, K.; Ahmed, O.S.; Ponce-Hernandez, R.; Ota, T.; Win, Z.C.; Mizoue, N.; Yoshida, S. Attribution of Disturbance Agents to Forest Change Using a Landsat Time Series in Tropical Seasonal Forests in the Bago Mountains, Myanmar. Forests 2017, 8, 218. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef]
- Zeng, C.; Shen, H.; Zhang, L. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens. Environ. 2013, 131, 182–194. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Linke, J.; Fortin, M.-J.; Courtenay, S.; Cormier, R. High-resolution global maps of 21st-century annual forest loss: Independent accuracy assessment and application in a temperate forest region of Atlantic Canada. Remote Sens. Environ. 2017, 188, 164–176. [Google Scholar] [CrossRef]
- Cohen, W.; Healey, S.; Yang, Z.; Stehman, S.; Brewer, C.; Brooks, E.; Gorelick, N.; Huang, C.; Hughes, M.; Kennedy, R.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Chan, N.; Takeda, S. The Transition Away From Swidden Agriculture and Trends in Biomass Accumulation in Fallow Forests: Case Studies in the Southern Chin Hills of Myanmar. Mt. Res. Dev. 2016, 36, 320–331. [Google Scholar] [CrossRef]
- Ministry of Labour Immigration and Population. Overview of the Results of the 2014 Population and Housing Census, Myanmar; Ministry of Labour Immigration and Population: Nay Pyi Taw, Myanmar, 2017.
“Disturbance“ in Pixel-Based Change Detection | “Shifting Cultivation“ in Patch-Based Change Attribution | |
---|---|---|
Producer‘s accuracy (%) | 91.9 | 87.5 |
User‘s accuracy (%) | 35.8 | 100.0 |
Reference Patches | |||||
---|---|---|---|---|---|
Shifting Cultivation (ha) | No Shifting Cultivation (ha) | Sum (ha) | User’s Accuracy (%) | ||
Detected patches | Shifting cultivation (ha) | 529.9 | 182.3 | 712.3 | 74.4 |
No shifting cultivation (ha) | 645.7 | 33782.2 | 34427.9 | 98.1 | |
Sum (ha) | 1175.6 | 33964.6 | |||
Producer’s accuracy (%) | 45.1 | 99.5 |
Coefficients | Estimate | Standard Error | z Value | p Value | Odds Ratio |
---|---|---|---|---|---|
Intercept | 1.5831 | 0.1768 | 8.954 | <0.0001 | 4.870 |
Elevation (100 m) | 0.1342 | 0.0627 | 2.139 | 0.0324 | 1.144 |
Distance to nearest village (km) | −0.3059 | 0.0200 | −15.334 | <0.0001 | 0.736 |
Distance to nearest shifting cultivation in the same year (km) | −1.6090 | 0.0469 | −34.302 | <0.0001 | 0.200 |
Distance to nearest shifting cultivation in the preceding year (km) | −0.4895 | 0.0361 | −13.548 | <0.0001 | 0.613 |
Tasseled cap wetness value in the preceding year | −5.8257 | 1.0074 | −5.783 | <0.0001 | 0.003 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, K.; Ota, T.; Mizoue, N.; Yoshida, S. Patch-Based Assessments of Shifting Cultivation Detected by Landsat Time Series Images in Myanmar. Sustainability 2018, 10, 3350. https://doi.org/10.3390/su10093350
Shimizu K, Ota T, Mizoue N, Yoshida S. Patch-Based Assessments of Shifting Cultivation Detected by Landsat Time Series Images in Myanmar. Sustainability. 2018; 10(9):3350. https://doi.org/10.3390/su10093350
Chicago/Turabian StyleShimizu, Katsuto, Tetsuji Ota, Nobuya Mizoue, and Shigejiro Yoshida. 2018. "Patch-Based Assessments of Shifting Cultivation Detected by Landsat Time Series Images in Myanmar" Sustainability 10, no. 9: 3350. https://doi.org/10.3390/su10093350
APA StyleShimizu, K., Ota, T., Mizoue, N., & Yoshida, S. (2018). Patch-Based Assessments of Shifting Cultivation Detected by Landsat Time Series Images in Myanmar. Sustainability, 10(9), 3350. https://doi.org/10.3390/su10093350