Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers
Abstract
:1. Introduction
2. Biosurfactant as a Metal(loid)-Complexing Biopolymer
Mechanism of Biosurfactant Removal of Metal(loid)s
3. Metal(loid) Removal by Microbial Flocculants
Mechanism of Metal(loid) Removal by Flocculation
4. Biofilms and Metal(loid) Removal
5. Conclusions and Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Biosurfactant from candida sphaerica ucp0995 exhibiting heavy metal remediation properties. Process Saf. Environ Prot. 2016, 102, 558–566. [Google Scholar] [CrossRef]
- Sarubbo, L.; Rocha, R., Jr.; Luna, J.; Rufino, R.; Santos, V.; Banat, I. Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem. Ecol. 2015, 31, 707–723. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Mukherjee, S.; Sen, R. Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour. Technol. 2009, 100, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Fashola, M.; Ngole-Jeme, V.; Babalola, O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef] [PubMed]
- Sriram, M.I.; Kalishwaralal, K.; Deepak, V.; Gracerosepat, R.; Srisakthi, K.; Gurunathan, S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain bacillus cereus nk1. Colloids Surf. B Biointerfaces 2011, 85, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Hashim, M.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manag. 2011, 92, 2355–2388. [Google Scholar] [CrossRef] [PubMed]
- Voica, D.M.; Bartha, L.; Banciu, H.L.; Oren, A. Heavy metal resistance in halophilic bacteria and archaea. FEMS Microbiol. Lett. 2016, 363, fnw146. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Lin, H.L. Remediation of soil contaminated with the heavy metal (cd2+). J. Hazard. Mater. 2005, 122, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valls, M.; De Lorenzo, V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 2002, 26, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaishnav, P.; Demain, A.L. Unexpected applications of secondary metabolites. Biotechnol. Adv. 2011, 29, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Gutnick, D.; Bach, H. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl. Microbiol. Biotechnol. 2000, 54, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Van Hamme, J.D.; Singh, A.; Ward, O.P. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol. Adv. 2006, 24, 604–620. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-W.; Yu, H.-Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 2014, 160, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kiran, B.; Kaushik, A. Chromium binding capacity of lyngbya putealis exopolysaccharides. Biochem. Eng. J. 2008, 38, 47–54. [Google Scholar] [CrossRef]
- Pal, A.; Paul, A. Microbial extracellular polymeric substances: Central elements in heavy metal bioremediation. Indian J. Microbiol. 2008, 48, 49. [Google Scholar] [CrossRef] [PubMed]
- Guibaud, G.; van Hullebusch, E.; Bordas, F.; d’Abzac, P.; Joussein, E. Sorption of cd (ii) and pb (ii) by exopolymeric substances (eps) extracted from activated sludges and pure bacterial strains: Modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresour. Technol. 2009, 100, 2959–2968. [Google Scholar] [CrossRef] [PubMed]
- Guibaud, G.; Bhatia, D.; d’Abzac, P.; Bourven, I.; Bordas, F.; Van Hullebusch, E.D.; Lens, P.N. Cd (ii) and pb (ii) sorption by extracellular polymeric substances (eps) extracted from anaerobic granular biofilms: Evidence of a ph sorption-edge. J. Taiwan Inst. Chem. Eng. 2012, 43, 444–449. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, X.; Mostofa, K.M.; Chen, X.; Mu, G.; Wu, F.; Liu, J.; Song, W.; Yang, J.; Liu, Y. Complexation between hg (ii) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy. J. Hazard. Mater. 2010, 175, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Guibaud, G.; Tixier, N.; Bouju, A.; Baudu, M. Relation between extracellular polymers’ composition and its ability to complex cd, cu and pb. Chemosphere 2003, 52, 1701–1710. [Google Scholar] [CrossRef]
- Mazaheri, A.M.; Tabatabaee, M. Biosurfactants and their use in upgrading petroleum vacuum distillation residue: A review. Int. J. Environ. Res. 2010, 4, 549–572. [Google Scholar]
- Kitamoto, D.; Morita, T.; Fukuoka, T.; Konishi, M.-A.; Imura, T. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr. Opin. Colloid Interface Sci. 2009, 14, 315–328. [Google Scholar] [CrossRef]
- Singh, P.; Cameotra, S.S. Enhancement of metal bioremediation by use of microbial surfactants. Biochem. Biophys. Res. Commun. 2004, 319, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Henkel, M.; Geissler, M.; Weggenmann, F.; Hausmann, R. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnol. J. 2017, 12, 1600561. [Google Scholar] [CrossRef] [PubMed]
- Bezza, F.A.; Chirwa, E.M.N. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (pahs) in creosote contaminated soil. Chemosphere 2016, 144, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Dadrasnia, A.; Ismail, S. Biosurfactant production by bacillus salmalaya for lubricating oil solubilization and biodegradation. Int. J. Environ. Res. Public Health 2015, 12, 9848–9863. [Google Scholar] [CrossRef] [PubMed]
- Arjoon, A.; Olaniran, A.; Pillay, B. Co-contamination of water with chlorinated hydrocarbons and heavy metals: Challenges and current bioremediation strategies. Int. J. Environ. Sci. Technol. 2013, 10, 395–412. [Google Scholar] [CrossRef]
- Miller, R.M. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ. Health Perspect. 1995, 103, 59. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Meng, Y.; Zeng, G.; Fang, Y.; Shi, J. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf. A: Physicochem. Eng. Asp. 2008, 317, 256–261. [Google Scholar] [CrossRef]
- Torrens, J.L.; Herman, D.C.; Miller-Maier, R.M. Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environ. Sci. Technol. 1998, 32, 776–781. [Google Scholar] [CrossRef]
- Dahrazma, B.; Mulligan, C.N. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 2007, 69, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Rufino, R.D.; Luna, J.M.; Campos-Takaki, G.M.; Ferreira, S.R.; Sarubbo, L.A. Application of the biosurfactant produced by candida lipolytica in the remediation of heavy metals. Chem. Eng. 2012, 27. [Google Scholar] [CrossRef]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, A.; Gandolfi, I.; Fracchia, L.; Van Hamme, J.; Gkorezis, P.; Marchant, R.; Banat, I.M. Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In Biosurfactants: Production and Utilization—Processes, Technologies, and Economics; Kosaric, N.F.V.S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; Volume 159, pp. 361–369. [Google Scholar]
- Gnanamani, A.; Kavitha, V.; Radhakrishnan, N.; Rajakumar, G.S.; Sekaran, G.; Mandal, A. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf. B Biointerfaces 2010, 79, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.; Das, S. Biosurfactant-based bioremediation of toxic metals. Microb. Biodegrad. Bioremediat. 2014, 167–201. [Google Scholar] [CrossRef]
- Hong, K.-J.; Tokunaga, S.; Kajiuchi, T. Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 2002, 49, 379–387. [Google Scholar] [CrossRef]
- Aşçı, Y.; Nurbaş, M.; Açıkel, Y.S. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J. Environ. Manag. 2010, 91, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Juwarkar, A.A.; Nair, A.; Dubey, K.V.; Singh, S.; Devotta, S. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 2007, 68, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.; Duran, N.; Diez, M. Biosurfactants are useful tools for the bioremediation of contaminated soil: A review. J. Soil Sci. Plant Nutr. 2012, 12, 667–687. [Google Scholar] [CrossRef]
- Pacwa-Płociniczak, M.; Płaza, G.A.; Piotrowska-Seget, Z.; Cameotra, S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011, 12, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Marchant, R.; Banat, I.M. Biosurfactants: A sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012, 34, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Cameotra, S.S. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 7367–7376. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 2001, 85, 111–125. [Google Scholar] [CrossRef]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin. J. Soil Contam. 1999, 8, 231–254. [Google Scholar] [CrossRef]
- Diaz, M.A.; De Ranson, I.U.; Dorta, B.; Banat, I.M.; Blazquez, M.L.; Gonzalez, F.; Muñoz, J.A.; Ballester, A. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sedim. Contam. Int. J. 2015, 24, 16–29. [Google Scholar] [CrossRef]
- Gao, L.; Kano, N.; Sato, Y.; Li, C.; Zhang, S.; Imaizumi, H. Behavior and distribution of heavy metals including rare earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application. Bioinorg. Chem. Appl. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Rufino, R.; Rodrigues, G.; Campos-Takaki, G.; Sarubbo, L.; Ferreira, S. Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Appl. Environ. Soil Sci. 2011, 2011. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy metals from mine tailings. Process Biochem. 2009, 44, 296–301. [Google Scholar] [CrossRef]
- Okaiyeto, K.; Nwodo, U.U.; Okoli, S.A.; Mabinya, L.V.; Okoh, A.I. Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. MicrobiologyOpen 2016, 5, 177–211. [Google Scholar] [CrossRef] [PubMed]
- Sajayan, A.; Seghal Kiran, G.; Priyadharshini, S.; Poulose, N.; Selvin, J. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a vibrio bioluminescence reporter assay. Environ. Pollut. 2017, 228, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Chong, M.F.; Robinson, J.; Binner, E. A review on development and application of plant-based bioflocculants and grafted bioflocculants. Ind. Eng. Chem. Res. 2014, 53, 18357–18369. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N. Recent advances in extracellular biopolymer flocculants. Biotechnol. Adv. 2014, 32, 1506–1522. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.-F.; Sun, M.; Song, W.; Wang, G. An integrated approach to optimize the conditioning chemicals for enhanced sludge conditioning in a pilot-scale sludge dewatering process. Bioresour. Technol. 2012, 121, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Farag, S.; Zaki, S.; Elkady, M.; Abd-El-Haleem, D. Production and characteristics of a bioflocculant produced by pseudomonas sp. Strain 38a. J. Adv. Biolo. 2014, 4, 286–295. [Google Scholar]
- Guo, J. Characteristics and mechanisms of cu (ii) sorption from aqueous solution by using bioflocculant mbfr10543. Appl. Microbiol. Biotechnol. 2015, 99, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Harichund, C. Isolation and characterization of heavy metal removing bacterial bioflocculants. Afr. J. Microbiol. Res. 2011, 5, 599–607. [Google Scholar]
- Pathak, M.; Devi, A.; Sarma, H.K.; Lal, B. Application of bioflocculating property of pseudomonas aeruginosa strain iasst201 in treatment of oil-field formation water. J. Basic Microbiol. 2014, 54, 658–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, C.; Wu, Y.; Hu, C. Comparison of coagulation performance and floc properties of a novel zirconium-glycine complex coagulant with traditional coagulants. Environ. Sci. Pollut. Res. 2014, 21, 6632–6639. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Yu, G.; Ting, Y.P. Production of a bioflocculant by aspergillus parasiticus and its application in dye removal. Colloids Surf. B Biointerfaces 2005, 44, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Sathiyanarayanan, G.; Bhatia, S.K.; Kim, H.J.; Kim, J.-H.; Jeon, J.-M.; Kim, Y.-G.; Park, S.-H.; Lee, S.H.; Lee, Y.K.; Yang, Y.-H. Metal removal and reduction potential of an exopolysaccharide produced by arctic psychrotrophic bacterium pseudomonas sp. Pamc 28620. RSC Adv. 2016, 6, 96870–96881. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Shojaosadati, S.A. Extracellular biopolymeric flocculants: Recent trends and biotechnological importance. Biotechnology Advances 2001, 19, 371–385. [Google Scholar] [CrossRef]
- Wang, L.; Ma, F.; Qu, Y.; Sun, D.; Li, A.; Guo, J.; Yu, B. Characterization of a compound bioflocculant produced by mixed culture of rhizobium radiobacter f2 and bacillus sphaeicus f6. World J. Microbiol. Biotechnol. 2011, 27, 2559–2565. [Google Scholar] [CrossRef]
- Wu, J.Y.; Ye, H.F. Characterization and flocculating properties of an extracellular biopolymer produced from a bacillus subtilis dyu1 isolate. Process Biochem. 2007, 42, 1114–1123. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Production and characteristics of a heavy metals removing bioflocculant produced by pseudomonas aeruginosa. Polish J. Microbiol. 2012, 61, 281–289. [Google Scholar]
- Kaewchai, S.; Prasertsan, P. Biosorption of heavy metal by thermotolerant polymer-producing bacterial cells and the bioflocculant. Songklanakarin J. Sci. Technol. 2002, 24, 421–430. [Google Scholar]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.-M.; Qian, C.-D.; Jiang, X.-H.; Wu, X.-C. Optimization and characterization of polysaccharide-based bioflocculant produced by paenibacillus elgii b69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Salehizadeh, H.; Shojaosadati, S.A. Removal of metal ions from aqueous solution by polysaccharide produced from bacillus firmus. Water Res. 2003, 37, 4231–4235. [Google Scholar] [CrossRef]
- Gao, Q.; Zhu, X.-H.; Mu, J.; Zhang, Y.; Dong, X.-W. Using ruditapes philippinarum conglutination mud to produce bioflocculant and its applications in wastewater treatment. Bioresour. Technol. 2009, 100, 4996–5001. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Farasin, J.; Koechler, S.; Varet, H.; Deschamps, J.; Dillies, M.A.; Proux, C.; Erhardt, M.; Huber, A.; Jagla, B.; Briandet, R. Comparison of biofilm formation and motility processes in arsenic-resistant thiomonas spp. Strains revealed divergent response to arsenite. Microb. Biotechnol. 2017, 10, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009, 14, 2535–2554. [Google Scholar] [CrossRef] [PubMed]
- Morel, M.A.; Ubalde, M.C.; Olivera-Bravo, S.; Callejas, C.; Gill, P.R.; Castro-Sowinski, S. Cellular and biochemical response to cr (vi) in stenotrophomonas sp. FEMS Microbiol. Lett. 2009, 291, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.J.; Kjellerup, B.V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl. Microbiol. Biotechnol. 2013, 97, 9909–9921. [Google Scholar] [CrossRef] [PubMed]
- van Hullebusch, E.D.; Zandvoort, M.H.; Lens, P.N. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2003, 2, 9–33. [Google Scholar] [CrossRef]
- Quintelas, C.; Sousa, E.; Silva, F.; Neto, S.; Tavares, T. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (vi) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 2006, 41, 2087–2091. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Benetton, X.; Varia, J.C.; Pozo, G.; Modin, O.; ter-Heijne, A.; Fransaer, J.; Rabaey, K. Metal recovery by microbial electro-metallurgy. Prog. Mater. Sci. 2018, 94, 435–461. [Google Scholar] [CrossRef]
- Teitzel, G.M.; Parsek, M.R. Heavy metal resistance of biofilm and planktonic pseudomonas aeruginosa. Appl. Environ. Microbiol. 2003, 69, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Langley, S.; Beveridge, T. Metal binding by pseudomonas aeruginosa pao1 is influenced by growth of the cells as a biofilm. Can. J. Microbiol. 1999, 45, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.J.; Rabiei, M.; Turner, R.J.; Badry, E.A.; Sproule, K.M.; Ceri, H. Metal resistance in candida biofilms. FEMS Microbiol. Ecol. 2006, 55, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Jin, J.; Abruña, H.D.; Houston, P.L.; Hay, A.G.; Ghiorse, W.C.; Shuler, M.L.; Hidalgo, G.; Lion, L.W. Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ. Sci. Technol. 2007, 41, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Von Canstein, H.; Kelly, S.; Li, Y.; Wagner-Döbler, I. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl. Environ. Microbiol. 2002, 68, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
Organism | Biosurfactant Type | Contaminated Environment | pH | Temperature (°C) | Metals | Efficiency (%) | Reference |
---|---|---|---|---|---|---|---|
Bacillus subtilis A21 | Lipopeptide (50 × CMC) | Soil | 9 | 25 | Cd (989.8 mg/kg) | 44.2 | [46] |
Co (166.8 mg/kg) | 35.4 | ||||||
Cu (173.6 mg/kg) | 26.2 | ||||||
Ni (227.9 mg/kg) | 32.2 | ||||||
Pb (143.7 mg/kg) | 40.3 | ||||||
Zn (404.7 mg/kg) | 32.07 | ||||||
Bacillus subtilis | Surfactin (0.1%) | Soil | - | - | Cd (1 mM) | 15 | [48] |
Cu (1 mM) | 70 | ||||||
Zn (1 mM) | 25 | ||||||
Pseudomonas aeruginosa CVCM 411 | Rhamnolipid (1 mg/mL) | Soil | 8 | 25 | Fe | 19 | [49] |
Zn | 52 | ||||||
Commercial | Rhamnolipid (5%) | Soil | 6.5 | 25 | Cu (140 mg/kg) | 37 | [33] |
Ni (76 mg/kg) | 33.2 | ||||||
Zn (4854 mg/kg) | 7.5 | ||||||
Bacillus circulans | Crude surfactant (5 × CMC) | Soil | - | - | Cd (100 ppm) | 97.66 | [4] |
Pb (100 ppm) | 100 | ||||||
Commercial | Saponin (30 g/dm3) | Sludge | 3 | 25 | Cr (1000 ppm) | 56.1 | [50] |
Ni (1000 ppm) | 64.2 | ||||||
Pb (1360 ppm) | 73.2 | ||||||
Candida sphaerica UCP 0995 | Soil | 27 | Fe (1877 mg/kg) | 95 | [1] | ||
Pb (3038 mg/kg) | 79 | ||||||
Zn (1470 mg/kg) | 90 | ||||||
Torulopsis bombicola | Sophorolipid (4% and 0.7% HCl) | Soil | 5.4 | - | Cu | 25 | [47] |
Zn | 60 | ||||||
Candida lipolytica UCP 0988 | Lipoprotein | Soil | Cd (0.9 mg/kg) | 50 | [51] | ||
Cu (13.3 mg/kg) | 96 | ||||||
Fe (52.5 g/kg) | 16.5 | ||||||
Pb (14 mg/kg) | 15.4 | ||||||
Zn (19.1 mg/kg) | 96 |
Isolate | Source | Flocculating Efficiency (%) | Metal(loid)s Removed | Metal(loid) Removal (%) | pH | Reference |
---|---|---|---|---|---|---|
Pseudomonas aeruginosa | 62.25 | Cu (20 mg/L) | 87.39 | 7 | [68] | |
Hg (20 mg/L) | 89.09 | |||||
Pb (40 mg/L) | 79.7 | |||||
Cd (40 mg/L) | 79.73 | |||||
As (60 mg/L) | 72.96 | |||||
Zn (60 mg/L) | 80.59 | |||||
Rhodococcus erythropolis | Swine wastewater | 44.7 | Cu (100 mg/L) | 96.9 | 6 | [59] |
Bacillus subtilis WD 90 | Activated sludge | 90.69 | Cd (60 mg/L) | 90.9 | 8 | [69] |
Ni (10 mg/L) | 90.7 | |||||
Pantoea agglomerans | Activated sludge | 87.84 | Cd (60 mg/L) | 84.2 | 7 | |
Ni (10 mg/L) | 92.8 | |||||
Paenibacillus elgii | Soil | 87 | Al (2 mM) | 72 | 7.2 | [70] |
Co (2 mM) | 49 | |||||
Cu (2 mM) | 53 | |||||
Pb (2 mM) | 60 | |||||
Bacillus cereus | Marine sponge (Dendrilla nigra) | 94 | Cu (1–3 mM) | Significant reduction | 7 | [54] |
Hg (1–3 mM) | ||||||
Zn (1–3 mM) | ||||||
Bacillus firmus | Soil | Cu (1000 mg/L) | 74.9 | 4 | [71] | |
Pb (1000 mg/L) | 98.3 | 4.5 | ||||
Zn (1000 mg/L) | 61.8 | 6 | ||||
Rothia sp. ZHT4-13 | Ruditapes philippinarum conglutination mud | 86.22 | Cr (1 mg/L) | 69.3 | 9 | [72] |
Ni (20 mg/L) | 19.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayangbenro, A.S.; Babalola, O.O. Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers. Sustainability 2018, 10, 3028. https://doi.org/10.3390/su10093028
Ayangbenro AS, Babalola OO. Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers. Sustainability. 2018; 10(9):3028. https://doi.org/10.3390/su10093028
Chicago/Turabian StyleAyangbenro, Ayansina Segun, and Olubukola Oluranti Babalola. 2018. "Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers" Sustainability 10, no. 9: 3028. https://doi.org/10.3390/su10093028
APA StyleAyangbenro, A. S., & Babalola, O. O. (2018). Metal(loid) Bioremediation: Strategies Employed by Microbial Polymers. Sustainability, 10(9), 3028. https://doi.org/10.3390/su10093028