Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. LCA Assessment Methodology
2.2. LCC Assessment Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huttmanová, E. Selected Aspects and Problems of Evaluation of Sustainable Development. 2017. Available online: https://lnk.sk/bjqZ (accessed on 2 October 2017).
- Mederly, P. Environmentálne Indikátory Trvalo Udržateľného Rozvoja. Ph.D. Thesis, Fakulta prírodných vied UKF v Nitre, Nitra, Slovakia, 2009. [Google Scholar]
- Tambouratzis, T. Analysing the construction of the environmental sustainability index 2005. Int. J. Environ. Sci. Technol. 2016, 13, 2817–2836. [Google Scholar] [CrossRef]
- Klemeš, J.J. Assessing and measuring environmental impact and sustainability. Clean Technol. Environ. 2015, 17, 577–578. [Google Scholar] [CrossRef][Green Version]
- Pintarič, Z.N.; Varbanov, P.S.; Klemeš, J.J.; Kravanja, Z. Evaluating the Economic Efficiency of the Technologies for Greenhouse Gas Footprint Reduction. Chem. Eng. Trans. 2015, 45, 535–540. [Google Scholar] [CrossRef]
- Yong, J.Y.; Klemeš, J.J.; Varbanov, P.S.; Huisingh, D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. J. Clean. Prod. 2016, 111, 1–16. [Google Scholar] [CrossRef]
- Ylmaz, M.; Bakis, A. Sustainability in construction. Procedia Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- European Council for an Energy Efficient Economy (ECEEE). Products Covered and Their Status in the EuP Process; ECEEE: Stockholm, Sweden, 2013. [Google Scholar]
- European Union (EU). Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC; Directives; Office Journal of the EU: Brussels, Belgium, 2012. [Google Scholar]
- International Energy Agency (IEA). Technology Roadmap—Energy Efficient Building Envelopes; OECD: Paris, France, 2013. [Google Scholar]
- Smith, R.E.; Timberlake, J. Prefab Architecture: A Guide to Modular Design and Construction; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-27561-0. [Google Scholar]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Burwood, S.; Jess, P. Modern Methods of Construction Evolution or Revolution? A BURA Steering and Development Forum Report; American Research Institute for Policy Development: New York, NY, USA, 2005; Available online: https://pdfs.semanticscholar.org/d7de/2b7518554ae5eef659877c43fa4558b62b3d.pdf (accessed on 1 October 2017).
- Bragança, L.; Mateus, R.; Koukkari, H. Building Sustainability Assessment. Sustainability 2010, 2, 2010–2023. [Google Scholar] [CrossRef]
- Pifko, H. NEED—Navrhovanie Energeticky Efektívnych Domov; Vydavateľstvo Eurostav: Bratislava, Slovakia, 2017. [Google Scholar]
- Farr, D. Sustainable Urbanism: Urban Design with Nature; Wiley: Chicago, IL, USA, 2008; ISBN 047 177751X. [Google Scholar]
- World Wide Fund for Nature (WWF). 2018. Available online: https://www.wwf.org.uk/what-we-do/area-of-work/promoting-sustainable-living (accessed on 6 February 2018).
- Ministry of Environment of the Slovak Republic. 2018. Available online: http://www.minzp.sk/en/ (accessed on 8 February 2018).
- Klincko, A. Bývanie v 21. Storočí v Košiciach Stratégia Rozvoja Bývania. 2003. Available online: https://www.kosice.sk/static/akcny_plan_byvania.rtf (accessed on 5 February 2018).
- Cholujová, M. Ev. č.: Rekt-13369-10618. In Prieskum Záujmu o Domy na Báze Dreva v Banskobystrickom Regióne; Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2011. [Google Scholar]
- Pošiváková, T.; Hromada, R.; Veszelits Laktičová, K.; Vargová, M.; Pošivák, J.; Molnár, L. Selected Aspects of Integrated Environmental Management. Ann. Agric. Environ. Med. 2018. [Google Scholar] [CrossRef]
- Katunsky, D.; Katunska, J.; Toth, S. Possibility of choices industrial hall object reconstruction. In Proceedings of the 15th International Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria, 18–24 June 2015; pp. 389–396. [Google Scholar] [CrossRef]
- Bholah, R.; Subratty, A.H. Indoor biological contaminants and symptoms of sick building syndrome in office buildings in Mauritius. Int. J. Environ. Health Res. 2002, 12, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Olaide, O.; Osman, S.B.; Yusof, F. Hygrothermal performance of building envelopes in the tropics under operative conditions: Condensation and mould growth risk appraisal. J. Teknol. 2016, 78, 271–279. [Google Scholar] [CrossRef][Green Version]
- Rajničová, L. Analýza možností využitia LCA v rozhodovacom procese v odpadovom hospodárstve. Novus. Sci. 2007, 1, 489–493. [Google Scholar]
- Korytárová, J.; Hromádka, V.; Dufek, Z. Large city circle road Brno. Org. Technol. Manag. Constr. Int. J. 2012, 3, 584–592. [Google Scholar] [CrossRef]
- Napolano, L.; Menna, C.; Asprone, D.; Prota, A.; Manfredi, G. LCA-based study on structural retrofit options for masonry buildings. Int. J. Life Cycle Assess. 2015, 20, 23–35. [Google Scholar] [CrossRef]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Tywoniak, J.; Novák, J. Strategie Nízkoenergetického Stavění, Udržitelný Rozvoj Dřevostavby. 2017. Available online: http://stavba.tzb-info.cz/t.py?t=2&i=1029 (accessed on 5 September 2017).
- Strauss, A.; Frangopol, D.M.; Bergmeister, K. Life-Cycle and Sustainability of Civil Infrastructure Systems; CRC: London, UK, 2013. [Google Scholar]
- Schau, E.M.; Traverso, M.; Lehmann, A.; Finkbeiner, M. Life Cycle Costing in Sustainability Assessment-A Case Study of Remanufactured Alternators. Sustainability 2011, 3, 2268–2288. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction-The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K. Generation of a Tropically Adapted Energy Performance Certificate for Residential Buildings. Sustainability 2014, 6, 8415–8431. [Google Scholar] [CrossRef]
- Vinodh, S.; Jayakrishna, K.; Kumar, V.; Dutta, R. Development of Decision Support System for Sustainability Evaluation: A Case Study. Clean Technol. Environ. Policy 2014, 16, 163–174. [Google Scholar] [CrossRef]
- European Union (EU). Sustainability of Construction. Assessment of the Environmental Performance of Buildings. Calculation Methods; EN 15978; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Tsai, C.-Y.; Chang, A.-S. Framework for Developing Construction Sustainability Items: The Example of Highway Design. J. Clean. Prod. 2012, 20, 127–136. [Google Scholar] [CrossRef]
- Ali, H.H.; Al Nsairat, S.F. Developing a green building assessment tool for developing countries-Case of Jordan. Build. Environ. 2009, 44, 1053–1064. [Google Scholar] [CrossRef]
- Siva, V.; Hoppe, T.; Jain, M. Green Buildings in Singapore; Analyzing a Frontrunner’s Sectoral Innovation System. Sustainability 2017, 9, 919. [Google Scholar] [CrossRef]
- Hauschild, M.; Jeswiet, J.; Alting, L. From life cycle assessment to sustainable production: Status and perspectives. CIRP Ann. Manuf. Technol. 2005, 54, 1–21. [Google Scholar] [CrossRef]
- Lichtenvort, K.; Rebitzer, G.; Huppes, G.; Ciroth, A.; Seuring, S.; Schmidt, W.-P.; Günther, E.; Hoppe, H.; Swarr, T.; Hunkeler, D. Introduction—History of life cycle costing, its categorization, and its basic framework. In Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Rebitzer, G.; Nakamura, S. Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- ISO. Environmental Management-Life Cycle Assessment-Principles and Framework, 2nd ed.; ISO 14040; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO 14044; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Kelly, J.; Hunter, K. Life Cycle Costing of Sustainable Design; RICS Research: London, UK, 2009. [Google Scholar]
- ISO. Buildings and Constructed Assets—Service Life Planning, Part 5: Life Cycle Costing; ISO 15686-5; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Faber, A.; Hoppe, T. Co-constructing a sustainable built environment in the Netherlands-Dynamics and opportunities in an environmental sectoral innovation system. Energy Policy 2012, 52, 628–638. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Gou, Z. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers? Sustainability 2017, 9, 1703. [Google Scholar] [CrossRef]
- Azman, M.N.A.; Ahamad, M.S.S.; Hilmi, N.D. The perspective view of Malaysian industrialized building system (IBS) under IBS precast manufacturing. In Proceedings of the 4th International Engineering Conference-Towards Engineering of 21st Century, Gaza City, Gaza Strip, 15–16 October 2012. [Google Scholar]
- Lovell, H.; Smith, S.J. Agencement in housing markets, the case of the UK construction industry. Geoforum 2010, 41, 457–468. [Google Scholar] [CrossRef]
- Arif, M.; Egbu, C. Making a case for offsite construction in China. Eng. Constr. Archit. Manag. 2010, 17, 536–548. [Google Scholar] [CrossRef]
- Report by the National Audit Office (RNAO). Using Modern Methods of Construction to Build Homes more Quickly and Efficiently; RNAO: London, UK, 2005. [Google Scholar]
- Slovak Federation for Processors of Wood (SFPW). 2017. Available online: http://www.zsdsr.sk/en/home (accessed on 4 September 2017).
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings-An energy system approach. Build. Environ. 2012, 51, 361–369. [Google Scholar] [CrossRef]
- Zgutova, K.; Decky, M.; Sramek, J.; Dreveny, I. Using of Alternative Methods at Earthworks Quality Control. Procedia Earth Planet. Sci. 2015, 15, 263–270. [Google Scholar] [CrossRef]
- Olsova, J.; Gašparik, J.; Stefunkova, Z.; Briatka, P. Interaction of the asphalt layers reinforced by glass-fiber mesh. In Proceedings of the 2nd International Conference on Engineering Sciences and Technologies, High Tatras Mountains, Tatranské Matliare, Slovak, 29 June–1 July 2016; pp. 803–808. [Google Scholar]
- Gašparik, J.; Gašparík, M. Automated quality excellence evaluation. Gerontechnology 2012, 11, 84. [Google Scholar] [CrossRef]
- Sebok, T.; Vondruska, M.; Kulisek, K. Influence of MSFC-type dispersant composition on the performance of soluble anhydrite binders. Cem. Concr. Res. 2001, 31, 1593–1599. [Google Scholar] [CrossRef]
- Lupisek, A.; Nehasilova, M.; Mancik, S.; Zelezna, J.; Ruzicka, J.; Fiala, C.; Tywoniak, J.; Hajek, P. Desighn strategies of building with low embodied energy. Proc. Inst. Civ. Eng.-Eng. Sustain. 2017, 170, 65–80. [Google Scholar] [CrossRef]
- Minarovičová, K.; Antošová, N. Sustainability of ETICS maintenance technologies. Appl. Mech. Mater. Adv. Archit. Des. Constr. 2016, 820, 194–199. [Google Scholar] [CrossRef]
- Woloszyn, M.; Kalamees, T.; Abadie, M.O.; Steeman, M.; Kalagasidis, A.S. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 2009, 44, 515–524. [Google Scholar] [CrossRef]
- Takano, A.; Hughes, M.; Winter, S. A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build. Environ. 2014, 82, 526–535. [Google Scholar] [CrossRef]
- Mesároš, P.; Mandičák, T.; Selín, J. Modern methods for cost management in construction enterprises, Journal of Civil Engineering. Sel. Sci. Pap. 2015, 10, 111–120. [Google Scholar]
- Hulinova, Z.; Funtik, T.; Madova, J.; Bistak, A. Effectiveness of costs incurred for labor protection. In Advances and Trends in Engineering Sciences and Technologies II; CRC Press: Boca Raton, FL, USA, 2017; pp. 425–431. [Google Scholar]
- European Union (EU). Sustainability of Construction Works-Assessment of Buildings-Part 3: Framework for the Assessment of Social Performance; Prepared by CEN/TC 350/WG 5; EN 15643-3; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- European Union (EU). Sustainability of Construction Works-Assessment of Buildings-Part 4: Framework for the Assessment of Economic Performance; Prepared by CEN/TC 350/WG 4; EN 15643-4; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Haas Fertigbau, Slovakia. 2018. Available online: https://www.haas-fertigbau.sk/ (accessed on 5 February 2018).
- Majumdar, D.; Majhi, B.J.; Dutta, A.; Mandal, R.; Jash, T. Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol. Environ. 2015, 17, 1093–1101. [Google Scholar] [CrossRef]
- Panepinto, D.; Brizio, E.; Genon, G. Atmospheric pollutants and air quality effects: Limitation costs and environmental advantages (a cost-benefit approach). Clean Technol. Environ. 2014, 16, 1805–1813. [Google Scholar] [CrossRef]
- ISO. Buildings and Constructed Assets—Service Life Planning, Part 1: General Principles and Framework; ISO 15686-1; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Bhochhibhoya, S.; Pizzol, M.; Achten, W.M.J.; Maskey, R.K.; Zanetti, M.; Cavalli, R. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya. Int. J. Life Cycle Assess. 2017, 22, 1851–1863. [Google Scholar] [CrossRef]
- Santi, S.; Pierobon, F.; Corradini, G.; Cavalli, R.; Zanetti, M. Massive wood material for sustainable building design: the Massiv-Holz-Mauer wall system. J. Wood Sci. 2016, 62, 416–428. [Google Scholar] [CrossRef]
- Ximenes, A.F.; Grant, T. Quantifying the greenhouse benefits of the use of wood products in two popular house designs in Sydney, Australia. Int. J. Life Cycle Assess. 2013, 18, 891–908. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Brito, J.; Pinheiro, M.D. From the new European standards to an environmental, energy and economic assessment of building assemblies from cradle-to-cradle(3E-C2C). Energy Build. 2013, 64, 199–208. [Google Scholar] [CrossRef]
- Morel, J.C.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: Means to drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119–1126. [Google Scholar] [CrossRef]
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Pajchrowski, G.; Noskowiak, A.; Lewandowska, A.; Strykowski, W. Wood as a building material in the light of environmental assessment of full life cycle of four buildings. Constr. Build. Mater. 2014, 52, 428–436. [Google Scholar] [CrossRef]
- Upton, B.; Miner, R.; Spinney, M.; Heath, L.S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10. [Google Scholar] [CrossRef]
- Almusaed, A.; Almssad, A. Building materials in eco-energy houses from Iraq and Iran. Case Stud. Constr. Mater. 2015, 2, 42–54. [Google Scholar] [CrossRef][Green Version]
- Glasare, G.; Haglund, P. Climate Impacts of Wood vs. Non Wood Buildings; Sveriges Kommuner och Landsting: Stockholm, Sweden, 2016; ISBN 978-91-7585-377-2. [Google Scholar]
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-gate sustainable target value design: Integrating life cycle assessment and construction management for buildings. JCP 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Goldstein, B.; Eriksson, A.H. Livscykelkostnader-Till Vilken Nytta för Miljön och Plånboken? Nordiska Ministerrådet: Köpenhamn, Denmark, 2010. [Google Scholar]
- Afshari, A.; Nikolopoulou, C.; Martin, M. Life-Cycle Analysis of Building Retrofits at the Urban Scale—A Case Study in United Arab Emirates. Sustainability 2014, 6, 453–473. [Google Scholar] [CrossRef]
- Toosi, H.A.; Balador, Z.; Gjerde, M.; Vakili-Ardebili, A. A life Cycle Cost Analysis and Environmental Assessment on the Photovoltaic System in Buildings: Two Case Studies in Iran. J. Clean Energy Technol. 2018, 6, 134–138. [Google Scholar] [CrossRef]
- Alama, M.; Singhb, H. A combined life cycle cost and energy analysis of Vacuum insulation Panels (VIPs) in building applications. In Proceedings of the 13th International Vacuum Insulation Symposium (IVIS), Paris, France, 20–21 September 2017. [Google Scholar]
- Dwaikata, L.N.; Ali, K.N. Green Buildings Life Cycle Cost Analysis and Life Cycle Budget Development: Practical Applications. J. Build. Eng. 2018, 18, 303–311. [Google Scholar] [CrossRef]
- Marszal, A.J.; Heiselberg, P. Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy 2011, 36, 5600–5609. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-cycle cost–benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A. Optimizing insulation thickness for buildings using life cycle cost. Appl. Energy 1999, 63, 115–124. [Google Scholar] [CrossRef]
- Schade, J. Life cycle cost calculation models for buildings. In Proceedings of the 4th Nordic Conference on Construction Economics and Organisation: Development Processes in Construction Mangement, Luleå Tekniska Universitet, Luleå, Sweden, 14–15 June 2007. [Google Scholar]
Panel Wood Construction | Masonry Construction | |||
---|---|---|---|---|
Foundations |
|
| ||
Vertical structures |
|
| ||
Horizontal structures |
|
| ||
Roofing |
|
Panel Wood Construction | Masonry Construction | |
---|---|---|
Foundations |
| |
Vertical and horizontal structures |
|
|
Roofing |
| |
Surfacing and completions |
|
|
Transported Quantities (t) | Number of Rides | Transport Distance (km) | Average Emissions CO2 of Vehiclesk g/km | Emissions of CO2 (kg) | ||||
---|---|---|---|---|---|---|---|---|
PWC | MC | PWC | MC | PWC | MC | |||
Concrete | 147.6 (61.5m3) | 354.24 (147.6 m3) | 11 | 25 | 20 | 0.8 | 176 | 400 |
Reinforcement | 2.46 | 12 | 1 | 1 | 20 | 16 | 16 | |
Formwork system | - | 16.23 (202.9 m2) | 0 | 1 | 20 | 0 | 16 | |
Panels of wood construction | 46.12 | - | 2 | 0 | 20 (50, 100) * | 32 (80, 160) * | 0 | |
Masonry material | - | 173.4 | 0 | 9 | 20 | 0 | 144 | |
Timber | 8.61 | 8.61 | 1 | 1 | 20 | 16 | 16 | |
Sum | 204.79 | 564.48 | 14 | 37 | 240 (288, 368) * | 592 |
Masonry Construction | Panel Wood Construction | ||||
---|---|---|---|---|---|
Lifecycle Phase | Phase | Costs (EUR) | Costs (EUR) | ||
Construction | Costs of building design | 2994 | 2371 | ||
Costs for the production of materials and components | 149,205 | 118,584 | |||
Transport costs of materials and components * | 2361 (transport-distance 20 km) 2415 (fixed costs) | 4776 | 984 (transport-distance 20 km) 2004 (fixed costs) | 2988 | |
Construction costs ** | 28,782 (foundations ) 100,162 (vertical and horizontal structures) 25,894 (roofing) 83,025 (surfacing and completions) | 237,863 | 19,800 (foundations) 93,654 (vertical and horizontal structures) 25,252 (roofing) 56,316 (surfacing and completions) | 195,022 | |
Operation | Operating costs | 680 (average annual cost of heating, water heating and cooling) 192 (average annual cost of lighting and electrical equipment) 72 (average annual cost of property tax and land) | 47,200 | 680 (average annual cost of heating, water heating and cooling) 192 (average annual cost of lighting and electrical equipment) 72 (average annual cost of property tax and land) | 47,200 |
Maintenance | Maintenance and repair costs *** | 611 (average annual cost—repairs fund) | 30,550 | 518.4 (average annual cost—repairs fund) | 30,550 |
End-of-Life | Costs of demolition and disposal | 5991 (demolition) 10,516 (transport and disposal) | 16,507 | 3012 (demolition) 3685 (transport and disposal) | 6697 |
Sum | 335,114 | Sum | 281,840 |
Masonry Construction | Panel Wood Construction | ||||
---|---|---|---|---|---|
Lifecycle Phase | Time (Weeks) | Time (Weeks) | |||
Construction | Time for building design | 4 | 4 | ||
Time of transport of materials and components * | Calculated at construction time | 28.5 | Calculated at construction time | 15 | |
Construction time ** | 5 weeks (foundations) 8.5 weeks (vertical and horizontal structures) 1.5 weeks (roofing) 13.5 weeks (surfacing and completions) | 5 weeks (foundations) 1.5 weeks (vertical and horizontal structures) 1.5 weeks (roofing) 7 weeks (surfacing and completions) | |||
Operation | Duration of use | 50 years (duration of use in years) | 50 years (duration of use in years) | ||
Maintenance | Maintenance and repair time | 50 years (duration of use in years) | 50 years (duration of use in years) | ||
End-of-Life | Time for demolition and disposal | 6 weeks (demolition) 5 weeks (transport and disposal) | 11 | 2.5 weeks (demolition) 2.5 weeks (transport and disposal) | 5 |
Sum (except for the period of use) | 43.5 | Sum (except for the period of use) | 24 |
Lifecycle Phase | Year in which Cost Occurs (Year) | Expected Yearly Cost (EUR) | Discount Factors * for 1% | NPV 1% | Discount Factors * for 3% | NPV 3% | Discount Factors * for 5% | NPV 5% |
---|---|---|---|---|---|---|---|---|
Operation and Maintenance | 1 | 1555 | 0.990 | 1539 | 0.97 | 1508 | 0.95 | 1477 |
10 | 13,995 | 0.905 | 12,665.4 | 0.74 | 10,356.3 | 0.61 | 8536.9 | |
20 | 15,550 | 0.820 | 12,751 | 0.55 | 8552 | 0.38 | 5909 | |
30 | 15,550 | 0.74 | 11,507 | 0.41 | 6375.5 | 0.23 | 3576.5 | |
40 | 15,550 | 0.67 | 10,418.5 | 0.31 | 4820.5 | 0.14 | 2177 | |
49 | 15,550 | 0.61 | 9485.5 | 0.23 | 3576.5 | 0.09 | 1399.5 | |
End-of-Life | 50 (Demolition) | 16,507 | 0.61 | 10,069.2 | 0.23 | 3796.6 | 0.09 | 1485.6 |
Sum | 94,257 | 68,436 | 38,986.2 | 24,561.7 |
Lifecycle Phase | Year in which Cost Occurs (Year) | Expected Yearly Cost (EUR) | Discount Factors * for 1% | NPV 1% | Discount Factors * for 3% | NPV 3% | Discount Factors * for 5% | NPV 5% |
---|---|---|---|---|---|---|---|---|
Operation and Maintenance | 1 | 1555 | 0.990 | 1539 | 0.97 | 1508 | 0.95 | 1477.2 |
10 | 13,995 | 0.905 | 12,665 | 0.74 | 10,356 | 0.61 | 8536.9 | |
20 | 15,550 | 0.820 | 12,751 | 0.55 | 8552.5 | 0.38 | 5909 | |
30 | 15,550 | 0.74 | 11 507 | 0.41 | 6375.5 | 0.23 | 3576.5 | |
40 | 15,550 | 0.67 | 10,418.5 | 0.31 | 4820.5 | 0.14 | 2177 | |
49 | 15,550 | 0.61 | 9485.5 | 0.23 | 3576.5 | 0.09 | 1399.5 | |
End-of-Life | 50 (Demolition) | 6697 | 0.61 | 4085.17 | 0.23 | 1540.3 | 0.09 | 602.7 |
Sum | 84,447 | 62,451.9 | 36,729.9 | 23,678.8 |
Masonry Construction | Panel Wood Construction | ||||||
---|---|---|---|---|---|---|---|
NPV | Construction | Operation, Maintenance and End-of-Life | Sum | Construction | Operation, Maintenance and End-of-Life | Sum | |
1% | Cost ratio (EUR) | 240,857 | 68,436 | 309,293 | 197,393 | 62,451 | 259,844 |
Percentage ratio (%) | 77.8 | 22.2 | 100 | 75.5 | 24.5 | 100 | |
3% | Cost ratio (EUR) | 240,857 | 38,986 | 279,843 | 197,393 | 36,729 | 234,122 |
Percentage ratio (%) | 85.9 | 14.1 | 100 | 84.3 | 15.7 | 100 | |
5% | Cost ratio (EUR) | 240,857 | 24,561 | 265,418 | 197,393 | 23,678 | 221,071 |
Percentage ratio (%) | 90.7 | 9.3 | 100 | 89.5 | 10.5 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švajlenka, J.; Kozlovská, M. Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability 2018, 10, 1502. https://doi.org/10.3390/su10051502
Švajlenka J, Kozlovská M. Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability. 2018; 10(5):1502. https://doi.org/10.3390/su10051502
Chicago/Turabian StyleŠvajlenka, Jozef, and Mária Kozlovská. 2018. "Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study" Sustainability 10, no. 5: 1502. https://doi.org/10.3390/su10051502
APA StyleŠvajlenka, J., & Kozlovská, M. (2018). Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability, 10(5), 1502. https://doi.org/10.3390/su10051502