Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture
Abstract
:1. Introduction
- Organic agriculture avoids genetic mutations and development of immunity among insects, reducing the pest outbreaks that pesticide use can unintentionally foster [26].
- By eliminating the expense of many inputs—including insecticides, herbicides and synthetic fertilizer—organic agriculture costs less and is economically competitive [27].
- By relying on inputs that exist in nature, organic agriculture offers a more harmonious orientation towards the natural world and, as such, constitutes a preferable ethical strategy for humankind [28].
2. The Land Requirements of a Global Transition to Organic Agriculture
3. Biodiversity and the Organic/Conventional Divide
4. Water Quality and Off-Site Environmental Impacts
5. The Ambiguous Lessons Offered by Environmental Life Cycle Analysis
“Organic farms tend to have higher soil organic matter content and lower nutrient losses (nitrogen leaching, nitrous oxide emissions and ammonia emissions) per unit of field area. However, ammonia emissions, nitrogen leaching and nitrous oxide emissions per product unit were higher from organic systems. Organic systems had lower energy requirements, but higher land use, eutrophication potential and acidification potential per product unit. The variation within the results across different studies was wide due to differences in the systems compared and research methods used.”[79]
6. Agriculture’s Carbon Footprint and Contribution to Climate Change
7. Desertification and Land Degradation Under Different Agricultural Regimes
8. Making Conventional and Organic Agriculture More Sustainable
Acknowledgments
Conflicts of Interest
References
- United Nations Convention to Combat Desertification. The Global Land Outlook, 1st ed.; UNCCD: Bonn, Germany, 2017. [Google Scholar]
- Willer, H.; Lernoud, J. Organic Agriculture Worldwide 2017: Current Statistics; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2017. [Google Scholar]
- Simpson, S. Nitrogen Fertilizer: Agricultural Breakthrough—And Environmental Bane. Scientific American, 20 March 2009. Available online: https://www.scientificamerican.com/article/nitrogen-fertilizer-anniversary/ (accessed on 4 April 2018).
- Mart, M. Pesticides, A Love Story. In America’s Enduring Embrace of Dangerous Chemicals; University of Kansas Press: Laurence, KS, USA, 2015. [Google Scholar]
- Vernon, J. Hunger: A Modern History; Harvard University Press: Cambridge, UK, 2009. [Google Scholar]
- UNCTAB. United Nations Conference on Trade and Development Trade and Environmental Review; UN Publications: New York, NY, USA, 2013. [Google Scholar]
- Cassman, G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crops Res. 2013, 143, 4–17. [Google Scholar]
- Food and Agriculture Organization. The State of Food Insecurity in the World 2015. 2015. Available online: http://www.fao.org/3/a-i4646e.pdf (accessed on 4 April 2018).
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- United Nations Department of Economics and Social Affairs. World Population Projected to Reach 9.7 Billion by 2050. 29 July 2015. Available online: http://www.un.org/en/development/desa/news/population/2015-report.html (accessed on 4 April 2018).
- Hafla, A.N.; MacAdam, J.W.; Soder, K.J. Sustainability of US organic beef and dairy production systems: Soil, plant and cattle interactions. Sustainability 2013, 5, 3009–3034. [Google Scholar] [CrossRef]
- (EC) No 834/2007 & Commission Regulation (EC) No 889/2009. Council of the European Union: June 2007. Off. J. Eur. Union 2017, 1–34. Available online: https://webgate.ec.europa.eu/agriportal/angebleu/pdf.download?docNum=32007r0834&lg=EN (accessed on 4 April 2018).
- Páyan-Renteria, R.; Garibay-Chávez, G.; Rangel-Ascencio, R.; Preciado-Martínez, V.; Muñoz-Islas, L.; Beltrán-Miranda, C.; Mena-Munguía, S.; Jave-Suárez, L.; Feria-Velasco, A.; De Celis, R. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch. Environ. Occup. Health 2012, 67, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Calvert, G.; Karnik, J.; Mehler, L.; Beckman, J.; Morrissey, B.; Sievert, J.; Barrett, R.; Lackovic, M.; Mabee, L.; Schwartz, A.; et al. Acute pesticide poisoning among agricultural workers in the United States, 1998–2005. Am. J. Ind. Med. 2008, 5, 883–898. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Mie, A.; Andresen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembialkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Relyea, R. The Impact of Insecticides and Herbicides on the Biodiversity and Productivity of Aquatic Communities. Ecol. Appl. 2005, 15, 618–627. [Google Scholar] [CrossRef]
- Chagnon, M.; Kreutzweiser, D.; Mitchell, E.A.D.; Morrissey, C.A.; Noome, D.A.; Van der Sluijs, J.P. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 2015, 22, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Rembialkowska, E. Quality of Plant Products from Organic Agriculture. J. Sci. Food Agric. 2007, 87, 2757–2762. [Google Scholar] [CrossRef]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic Food: Nutritious Food or Food for Thought? A Review of the Evidence. Int. J. Food Sci. Nutr. 2003, 54, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Bourn, D.; Prescott, J. A Comparison of the Nutritional Value, Sensory Qualities, and Food Safety of Organically and Conventionally Produced Foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Liebig, M.A.; Doran, J.W. Impact of Organic Production Practices on Soil Quality Indicators. J. Environ. Qual. 1999, 28, 1601–1609. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mader, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. J. Int. Soc. Microb. Ecol. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.F.; van der Heijden, M. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 2015, 52, 228–239. [Google Scholar] [CrossRef]
- Borel, B. When the Pesitcides Run Out. Nature 2017, 543, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Freyer, B.; Bingen, J.; Klimek, M. Ethics in the Organic Movement. In Re-Thinking Organic Food and Farming in a Changing World; Freyer, B., Bingen, J., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.; Davis, D.; Andrews, P. Methodologic flaws in selecting studies and comparing nutrient concentrations led Dangour et al to miss the emerging forest amid the trees. Am. J. Clin. Nutr. 2009, 90, 1700–1701. [Google Scholar] [CrossRef] [PubMed]
- Dangour, A.D.; Dodhia, S.K.; Hayter, A.; Allen, E.; Lock, K.; Uav, R. Nutritional quality of organic foods, a systematic review. Am. J. Clin. Nutr. 2009, 90, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Burchi, F.; De Muro, P. From food Availability to Nutritional Capabilities: Advancing Food Security Analysis. Food Policy 2016, 60, 10–19. [Google Scholar] [CrossRef]
- Holt-Giménez, E.; Shuttuck, A.; Altieri, M.; Herren, H.; Gliessman, S. We Already Grow Enough Food for 10 Billion People … and Still Can’t End Hunger. J. Sustain. Agric. 2012, 36, 595–598. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Schader, C.; Scialabba, N.E.-H.; Brüggemann, J.; Isensee, A.; Erb, K.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Garnett, T. Three perspectives on sustainable food security: Efficiency, demand restraint, food system transformation. What role for life cycle assessment? J. Clean. Prod. 2014, 73, 10–18. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Livestock’s Long Shadow, Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- United Nations Population Division. World Population Prospects 2017. 2017. Available online: https://esa.un.org/unpd/wpp/ (accessed on 4 April 2018).
- Adeel, Z.; Safriel, A.; Niemeiier, D.; White, R.N. Millennium Ecosystem Assessment, Ecosystems and Human Wellbeing, Desertification Synthesis; World Resource Institute: Washington, DC, USA, 2005. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Young, O.R. Effectiveness of international environmental regimes: Existing knowledge, cutting-edge themes, and research strategies. Proc. Natl. Acad. Sci. USA 2011, 108, 19853–19860. [Google Scholar] [CrossRef] [PubMed]
- Arnouts, R.; Arts, B. Environmental Governance Failure: The ‘Dark Side’ of an Essentially Optimistic Concept. In The Disoriented State: Shifts in Governmentality, Territoriality and Governance; Arts, B., Lagendijk, A., Houtum, H., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 201–228. [Google Scholar]
- Socolow, R.; Hotinski, R.; Greenblatt, J.; Pacala, S. Solving the Climate Problem, Technologies Available to Curb CO2 Emissions. Environ. Sci. Policy Sustain. Dev. 2004, 46, 8–19. [Google Scholar] [CrossRef]
- Tollefson, J. World’s carbon emissions set to spike by 2% in 2017. Nature 2017, 551, 283. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.M.; Romo-Rabago, E.; McLeary, R.; Reidy, L.; Nazari, J.; Herremans, I.M. The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renew. Sustain. Energy Rev. 2017, 78, 1397–1409. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2017–2026; OECD: Paris, France, 2017. [Google Scholar]
- Food and Agricultural Organization (FAO). World Agriculture: Towards 2015/2030. An FAO Perspective; FAO: Rome, Italy, 2003. [Google Scholar]
- Norton, T. From the Lab to the Supermarket: In Vitro Meat as a Viable Alternative to Traditional Meat Production. J. Food Law Policy 2015, 11, 157–180. [Google Scholar]
- World Wildlife Fund. Living Planet Report 2014, Species and Spaces, People and Places; World Wildlife Fund: Washington, DC, USA, 2015. [Google Scholar]
- Ceballos, G.; Ehrlich, P.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [PubMed]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Pfiffner, L.; Luka, H. Effects of low-input farming systems on carabids and epigeal spiders—A paired farm approach. Basic Appl. Ecol. 2003, 4, 117–127. [Google Scholar] [CrossRef]
- Gerhardt, R.-A. A Comparative Analysis of the Effects of Organic and Conventional Farming Systems on Soil Structure. Biol. Agric. Hortic. 1997, 14, 139–157. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Rydberg, N.T.; Milberg, P. A Survey of Weeds in Organic Farming in Sweden. Biol. Agric. Hortic. 2000, 18, 175–185. [Google Scholar] [CrossRef]
- Flowerdew, J.R. Mammal biodiversity in agricultural habitats. In Biodiversity and Conservation in Agriculture; Kirkwood, R.C., Ed.; British Crop Protection Council: Brighton, UK, 1997; pp. 25–40. [Google Scholar]
- Brown, R.W. Margin/field interfaces and small mammals. Asp. Appl. Biol. 1999, 54, 203–210. [Google Scholar]
- Beecher, N.A.; Johnson, R.J.; Brandle, J.R.; Case, R.M.; Young, L.J. Agroecology of birds in organic and nonorganic farmland. Conserv. Biol. 2002, 16, 1620–1631. [Google Scholar] [CrossRef]
- Kolbert, E. The Sixth Extinction: An Unnatural History; Henry Holt and Co.: New York, NY, USA, 2014. [Google Scholar]
- Phalan, B.; Balmford, A.; Green, R.E.; Scharlemann, J. Minimising the harm to biodiversity of producing more food globally. Food Policy 2011, 36, S62–S71. [Google Scholar] [CrossRef]
- Fischer, J.; Brosi, B.; Daily, G.C.; Ehrlich, P.R.; Goldman, R.; Goldstein, J.; Lindenmayer, D.B.; Manning, A.D.; HMooney, A.; Peichar, L.; et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 2008, 6, 380–385. [Google Scholar] [CrossRef]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E.E.; Kurtzman, D. Nitrate leaching from intensive organic farms to groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Anton, A.; Montero, J.I.; Munoz, P.; Castells, F. LCA and tomato production in Mediterranean greenhouses. Int. J. Agric. Resour. Gov. Ecol. 2005, 4, 102–112. [Google Scholar] [CrossRef]
- Thomassen, M.A.; Dalgaard, R.; Heijungs, R.; De Boer, I. Attributional and consequential LCA of milk production. Int. J. Life Cycle Assess. 2008, 13, 339–349. [Google Scholar] [CrossRef]
- Meier, S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Wood, R.; Lenzen, M.; Dey, C.; Lundie, S. A comparative study of some environmental impacts of conventional and organic farming in Australia. Agric. Syst. 2006, 89, 324–348. [Google Scholar] [CrossRef]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- Basset-Mens, C.; van der Werf, H.M.G.; Robinm, P.; Morvan, T.; Hassouna, M.; Paillat, J.M.; Vertès, F. Methods and data for the environmental inventory of contrasting pig production systems. J. Clean. Prod. 2007, 15, 1395–1405. [Google Scholar] [CrossRef]
- Stonehouse, D.P.; Clark, E.A.; Ogini, Y.A. Organic and Conventional Dairy Farm Comparisons in Ontario, Canada. Biol. Agric. Hortic. 2001, 19, 115–125. [Google Scholar] [CrossRef]
- Flysjö, A.; Cederberg, C.; Henriksson, M.; Ledgard, S. The interaction between milk and beef production and emissions from land use change—Critical considerations in life cycle assessment and carbon footprint studies of milk. J. Clean. Prod. 2012, 28, 134–142. [Google Scholar] [CrossRef]
- Thomassen, M.A.; van Calker, K.J.; Smits, M.C.J.; Iepema, G.L.; de Boer, I.J.M. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Cederberg, C.; Mattson, B. Life cycle assessment of milk production—A comparison of conventional and organic farming. J. Clean. Prod. 2000, 8, 49–60. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does organic farming reduce environmental impacts? A meta-analysis of European research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Herrero, M. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, A. The Future: Six Drivers of Global Change; Random House: New York, NY, USA, 2013. [Google Scholar]
- United Nations. Goal 13: Take Urgent Action to Combat Climate Change and Its Impacts. 2030 Agenda for Sustainable Development. 2015. Available online: http://www.un.org/sustainabledevelopment/climate-change-2/ (accessed on 4 April 2018).
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a Swiss retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Schmidinger, K.; Stehfest, E. Including CO2 implications of land occupation in LCAs—method and example for livestock products. Int. J. Life Cycle Assess. 2012, 17, 962–972. [Google Scholar] [CrossRef]
- Potter, P.; Ramankutty, M.; Bennett, E.M.; Donner, S. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Int. 2010, 14, 1–14. [Google Scholar] [CrossRef]
- Burton, C.H.; Turner, C. Manure Management: Treatment Strategies for Sustainable Agriculture, 2nd ed.; Llister and Durling: Bedford, UK, 2003. [Google Scholar]
- Pollock, J. Green Revolutionary. MIT Technology Review, 18 December 2007. Available online: https://www.technologyreview.com/s/409243/green-revolutionary/(accessed on 4 April 2018).
- Ramez, S.M.; Verrastro, V.; Cardone, G.; Btech, M.R.; Favia, M.; Moretti, M.; Roma, R. Optimization of Organic and Conventional Olive Agricultural Practices from a Life Cycle Assessment and Life Cycle Costing perspectives. J. Clean. Prod. 2014, 70, 78–89. [Google Scholar]
- Stappen, F.V.; Loriers, A.; Mathot, M.; Planchon, V.; Stillmant, D.; Debode, F. Organic versus conventional farming: The case of wheat production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef]
- Tal, A.; Cohen, J. Adding ‘Top Down’ to ‘Bottom Up’: A New Role for Environmental Legislation in Combating Desertification. Harv. J. Environ. Law 2007, 31, 163–219. [Google Scholar]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Global Assessment of Land Degradation and Improvement. 1. Identification by Remote Sensing; Report 2008/01; ISRIC e World Soil Information: Wageningen, The Netherlands, November 2008; Available online: http://www.isric.org/sites/default/files/isric_report_2008_01.pdf (accessed on 4 April 2018).
- Tanner, S.; Katra, I.; Haim, A.; Zaady, E. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices. Soil Tillage Res. 2016, 155, 149–156. [Google Scholar] [CrossRef]
- Katra, I.; Gross, A.; Swet, N.; Tanner, S.; Krasnov, H.; Angert, A. Substantial dust loss of bioavailable phosphorus from agricultural soils. Sci. Rep. 2016, 6, 24736. [Google Scholar] [CrossRef] [PubMed]
- Katra, I. Personal communication, 27 December 2017.
- Ruiz-Colmenero, M.; Beines, R.; Elddrige, J.; Marques, M.J. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. CATENA 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Tal, A. Rethinking the Sustainability of Israel’s Irrigation Practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Baipheth, M.N.; Jacobs, P.T. The Contribution of Subsistence Farming to Food Security in South Africa; Human Science Research Council: Pretoria, South Africa, 2009. [Google Scholar]
- Smale, M.; Cohen, M.J.; Nagarajan, L. Local Markets, Local Varieties: Rising Food Prices and Small Farmers’ Access to Seed. IFPRI Issue Brief 2009; International Food Policy Research Institute: Washington DC, USA, 2009. [Google Scholar]
- Southgate, D.; Graham, D. Growing Green: The Challenge of Sustainable Agricultural Development in Sub-Saharan Africa; International Policy Press: London, UK, 2006. [Google Scholar]
- Esiara, K. Farmers Take to Amiran Farmer Kit for Better Yields. The East African, 4 August 2012. Available online: http://www.theeastafrican.co.ke/rwanda/Business/Farmers-take-to-Amiran-Farmer-Kit-for-better-yields-/1433224-1470894-12go4j1z/index.html(accessed on 4 April 2018).
- Lotter, D. Facing food insecurity in Africa: Why, after 30 years of work in organic agriculture, I am promoting the use of synthetic fertilizers and herbicides in small-scale staple crop production. Agric. Hum. Values 2015, 32, 111–118. [Google Scholar] [CrossRef]
- Tilman, D.; Blazer, C.; Hill, J.; Befort, B. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Agricultural Sustainable Intensification. Available online: http://www.fao.org/policy-support/policy-themes/sustainable-intensification-agriculture/en/ (accessed on 29 January 2018).
- Morris, M.; Kelly, V.A.; Kopicki, R.J.; Byerlee, D. Fertilizer Use in African Agriculture Lessons Learned and Good Practice Guidelines; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- McArthur, J.W.; McCord, G.C. Fertilizing Growth: Agricultural Inputs and Their Effects in Economic Development; Global Economy and Development Working Paper No. 77; Brookings Institute: Washington, DC, USA, 2014. [Google Scholar]
- United Nations. Organic Agriculture and Food Security in Africa; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Willer, H.; Lernoud, J. The World of Organic Agriculture: Statistics and Emerging Trends 2017; Research Institute of Organic Agriculture: Frick, Switzerland; IFOAM-Organics International: Bonn, Germany, 2017. [Google Scholar]
- Buck, D.; Getz, C.; Guthman, J. From Farm to Table: The Organic Vegetable Commodity Chain of Northern California. Sociol. Rural. 1997, 37, 3–20. [Google Scholar] [CrossRef]
- Pollan, M. Naturally. New York Times, 13 May 2001. Available online: https://www.nytimes.com/2001/05/13/magazine/naturally.html(accessed on 4 April 2018).
- Stephenson, G.; Gwin, L.; Schneider, C.; Brown, S. Breaking New Ground, Farmer Perspectives on Organic Transition; Oregon State University: Corvallis, OR, USA, 2017. [Google Scholar]
- United States Department of Agriculture. National Organic Program; Agricultural Marketing Service: Washington, DC, USA, 2013. Available online: http://www.ams.usda.gov/AMSv1.0/NOPOrganicStandards (accessed on 4 April 2018).
- Hall, A.; Mogyorody, V. Organic Farmers in Ontario: An Examination of the Conventionalization Argument. Sociol. Rual. 2002, 41, 399–422. [Google Scholar] [CrossRef]
- Best, H. Organic agriculture and the conventionalization hypothesis: A case study from West Germany. Agric. Hum. Values 2008, 25, 95–106. [Google Scholar] [CrossRef]
- Garcia, M.R.; Guzman, I.; De Molina, M.G. Dynamics of organic agriculture in Andalusia: Moving toward conventionalization? Agroecol. Sustain. Food Syst. 2018, 42, 328–358. [Google Scholar] [CrossRef]
- Dinis, I.; Ortolani, L.; Boci, R.; Brites, C. Organic agriculture values and practices in Portugal and Italy. Agric. Syst. 2015, 136, 39–45. [Google Scholar] [CrossRef]
- Eurostat. 2017, Organic Farming Statistics. updated November 2018. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Organic_farming_statistics (accessed on 4 April 2018).
- Gao, H.; Park, H.; Sakashita, A.; Park, H.; Sashita, A. Conventionalization of Organic Agriculture in China: A Case Study of Haobao Organic Agricultural Company in Yunnan Province. Jpn. J. Agric. Econ. 2017, 19, 27–42. [Google Scholar] [CrossRef]
- Huang, M.T. Organic Promotion in Response to Consumer Demand and Import Substitution: Strategies and Experiences of the Republic of China. In Organic Agriculture and Agribusiness: Innovation and Fundamentals; Partap, T., Saeed, M., Eds.; Asian Productivity Organization: Tokyo, Japan, 2010; ISBN 92-833-7090-2. [Google Scholar]
- Carson, R. Silent Spring; Houghton Mifflin: Boston, MA, USA, 1962; p. 275. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tal, A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability 2018, 10, 1078. https://doi.org/10.3390/su10041078
Tal A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability. 2018; 10(4):1078. https://doi.org/10.3390/su10041078
Chicago/Turabian StyleTal, Alon. 2018. "Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture" Sustainability 10, no. 4: 1078. https://doi.org/10.3390/su10041078