A New Approach to Modeling Water Balance in Nile River Basin, Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. The InVEST Annual Water Yield Model
2.3. Model Input Variables and Preparation
3. Results
3.1. Model Calibration and Result Validation
3.2. Mean Annual Precipitation
3.3. Actual Evapotranspiration
3.4. Water Balance
4. Discussion
4.1. Major Water Balance Components of Nile River Basin
4.2. Uncertainties in This Model
4.3. Practical Implication
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Input Data | Type or Format | Value (Mean and Range) | Spatial Resolution | Sources |
---|---|---|---|---|
Average annual precipitation (mm) | GIS raster | 597 (1–2296) | 1 km × 1 km | WorldClim [23] |
Average annual ETo (mm) | GIS raster | 1970 (746–2340) | 1 km × 1 km | CGIAR CSI [36] |
Soil depth (mm) | GIS raster | 835 (100–1000) | 1 km × 1 km | FAO, IIASA [37] |
PAWC (mm) | GIS raster | 0.14 (0–0.3) | 1 km × 1 km | FAO, IIASA [37] |
LULC | GIS raster | see Table A2 | 1 km × 1 km | Global Land Cover Facility (GLCF) [38] |
Watershed and Sub-watersheds | GIS polygon/Shapefile | - | - | NBI [19] |
Root Depth | Per LULC class | see Table A2 | - | [27,28] |
Kc | Per LULC class | see Table A2 | - | [18,28] |
Z parameter | Integer number | 14.91 (1–30) | - | [18] |
LULC Description | LULC Code | Kc | Root Depth | LULC_veg |
---|---|---|---|---|
Water | 0 | 0.9 | 500 | 0 |
Evergreen Broadleaf Forest | 2 | 1.05 | 7000 | 1 |
Deciduous Broadleaf Forest | 4 | 1.05 | 7000 | 1 |
Woodland | 6 | 0.85 | 3000 | 1 |
Wooded Grassland | 7 | 0.85 | 5000 | 1 |
Closed Shrub land | 8 | 0.35 | 3000 | 1 |
Open Shrub land | 9 | 0.35 | 3000 | 1 |
Grassland | 10 | 0.82 | 5000 | 1 |
Cropland | 11 | 0.81 | 1000 | 1 |
Bare Ground | 12 | 0.5 | 300 | 0 |
Urban and Built | 14 | 0.37 | 500 | 0 |
References
- Haines-young, R.; Potschin, M. Chapter Six: The links between biodiversity, ecosystem services and human well-being. Ecosyst. Ecol. New Synth. 2010, 1–31. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Canqiang, Z.; Wenhua, L.; Biao, Z.; Moucheng, L. Water Yield of Xitiaoxi River Basin Based on InVEST Modeling. J. Resour. Ecol. 2012, 3, 50–54. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.U. Space and time aspects of ecosystem services, using the example of the EU Water Framework Directive. Int. J. Biodiv. Sci. Ecosyst. Serv. Manag. 2012, 8, 5–16. [Google Scholar] [CrossRef]
- Willcock, S.; Hooftman, D.; Sitas, N.; O’Farrell, P.; Hudson, M.D.; Reyers, B.; Eigenbrod, F.; Bullock, J.M. Do ecosystem service maps and models meet stakeholders’ needs? A preliminary survey across sub-Saharan Africa. Ecosyst. Serv. 2016, 18, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Georgakakos, A.; Visone, L.; Tidwell, A. Nile Decision Support Tool. In Watershed Hydrology; The Georgia Water Resources Institute: Atlanta, GA, USA, 2003. [Google Scholar]
- Levy, B.S.; Baecher, G.B. NileSim: A Windows-based hydrologic simulator of the Nile River basin. J. Water Resour. Plan. Manag. 1999, 125, 100–106. [Google Scholar] [CrossRef]
- Mohamed, Y.A.; van den Hurk, B.J.J.M.; Savenije, H.H.G.; Bastiaanssen, W.G.M. Hydroclimatology of the Nile: results from a regional climate model. Hydrol. Earth Syst. Sci. Discuss. 2005, 9, 263–278. [Google Scholar] [CrossRef]
- Senay, G.B.; Asante, K.; Artan, G. Water balance dynamics in the Nile Basin. Hydrol. Process. 2009, 3675–3681. [Google Scholar] [CrossRef]
- Kirby, M.; Eastham, J.; Mainuddin, M. Water-Use Accounts in CPWF Basins: Simple Water-Use Accounting of the Nile Basin; The CGIAR Challenge Program on Water and Food: Colombo, Sri Lanka, 2010; Available online: https://cgspace.cgiar.org/bitstream/handle/10568/4697/CPWF_BFP_WP_09.pdf?sequence=1 (accessed on 12 January 2017).
- Senay, G.B.; Verdin, J.P. Developing index maps of water-harvest potential in Africa. Appl. Eng. Agric. 2004, 20, 789–799. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Karimi, P.; Rebelo, L.; Duan, Z.; Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems. Remote Sens. Environ. 2014, 6, 10306–10334. [Google Scholar] [CrossRef]
- Johnston, R.; Smakhtin, V. Hydrological Modeling of Large River Basins: How Much is Enough? Water Resour. Manag. 2014, 28, 2695–2730. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J.B. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef]
- Van Griensven, A.; Ndomba, P.; Yalew, S.; Kilonzo, F. Critical review of SWAT applications in the upper Nile basin countries. Hydrol. Earth Syst. Sci. 2012, 16, 3371–3381. [Google Scholar] [CrossRef]
- Awulachew, S.B.; McCartney, M.; Steenhuis, T.S.; Ahmed, A.A. A Review of Hydrology, Sediment and Water Resource Use in the Blue Nile Basin; IWMI Working Paper 131; The CGIAR Challenge Program on Water and Food: Colombo, Sri Lanka, 2008. [Google Scholar]
- Bashar, K.E.; Mutua, F.; Mulungu, D.M.M.; Deksyos, T.; Shamseldin, A.Y. Appraisal study to select suitable Rainfall-Runoff model(s) for the Nile River Basin. In Proceedings of the International Conference of UNESCO Flanders FUST FRIEND/NILE Project, “Towards a Better Cooperation”, Sharm El-Sheikh, Egypt, 12–15 November 2005; Available online: https://www.researchgate.net/publication/272826948_Appraisal_Study_to_Select_Suitable_Rainfall-Runoff_Models_for_the_Nile_River_Basin (accessed on 19 May 2017).
- Sharp, E.R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Authors, C.; Nelson, E.; Ennaanay, D.; Wolny, S.; et al. InVEST 3.3.3 User’s Guide. Available online: http://data.naturalcapitalproject.org/nightly-build/release_default/release_default/documentation/index.html (accessed on 27 March 2017).
- NBI. Nile Basin Water Resources Atlas. Available online: http://nileis.nilebasin.org/content/nile-basin-water-resources-atlas (accessed on 12 March 2017).
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W025021–W02502114. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, 1–9. [Google Scholar] [CrossRef]
- WorldClim 1.4: Current Conditions. Available online: http://www.worldclim.org/current (accessed on 17 January 2017).
- Trabucco, A.; Zomer, R.J. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. 2009. Available online: http://www.cgiar-csi.org/wp-content/uploads/2012/11/Global-Aridity-and-Global-PET-Methodology.pdf (accessed on 13 January 2017).
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012; pp. 1–50. [Google Scholar]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification cation at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.; Ehleringer, J.; Mooney, H.A.; Sala, O.E.; Schulze, E.-D. Maximum rooting depth of vegetation types at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; Available online: http://www.fao.org/docrep/x0490e/x0490e00.htm (accessed on 28 December 2016).
- FAO. Assessment of the Irrigation Potential of the Nile Basin; Land and Water Division, FAO: Rome, Italy, 1997; p. 41. Available online: http://www.fao.org/docrep/W4347E/W4347E00.htm (accessed on 18 March 2017).
- Conway, D. A water balance model of the Upper Blue Nile in Ethiopia. Hydrol. Sci. J./J. Des. Sci. Hydrol. 1997, 42, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Wu, S.; Liu, Y. Relative contributions of land use and climate change to water supply variations over yellow river source area in Tibetan Plateau during the past three decades. PLoS ONE 2015, 10, e0123793. [Google Scholar] [CrossRef] [PubMed]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [PubMed]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef]
- CGIAR. CSI—Consultative Group on International Agricultural Research, Consortium on Spatial Information. Available online: http://csi.cgiar.org/Aridity/ (accessed on 17 January 2017).
- FAO. IIASA—International Institute for Applied Systems Analysis (IIASA). Available online: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (accessed on 14 February 2017).
- Global Land Cover Facility (GLCF). Available online: http://glcf.umd.edu/data/landcover/data.shtml (accessed on 17 February 2017).
Sub-Watersheds | Area (km2) | Precipitation mm/year | AET mm/year | Water Yield Volume Billion m3/year |
---|---|---|---|---|
White Nile | 270,753 | 513 | 496 | 4.60 |
Main Nile | 1,102,339 | 47 | 46 | 0.04 |
Lake Victoria | 264,083 | 1195 | 993 | 53.20 |
Victoria Nile | 85,643 | 1200 | 970 | 19.62 |
Lake Albert | 74,799 | 1180 | 911 | 19.89 |
Blue Nile | 319,831 | 1041 | 781 | 82.86 |
Baro Akobbo Sobat | 207,447 | 1025 | 863 | 33.50 |
Bahr El Jebel | 187,610 | 990 | 848 | 26.55 |
Bahr El Ghazal | 618,324 | 754 | 670 | 51.29 |
Tekeze Atbara | 248,219 | 477 | 424 | 12.87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belete, M.; Deng, J.; Zhou, M.; Wang, K.; You, S.; Hong, Y.; Weston, M. A New Approach to Modeling Water Balance in Nile River Basin, Africa. Sustainability 2018, 10, 810. https://doi.org/10.3390/su10030810
Belete M, Deng J, Zhou M, Wang K, You S, Hong Y, Weston M. A New Approach to Modeling Water Balance in Nile River Basin, Africa. Sustainability. 2018; 10(3):810. https://doi.org/10.3390/su10030810
Chicago/Turabian StyleBelete, Marye, Jinsong Deng, Mengmeng Zhou, Ke Wang, Shixue You, Yang Hong, and Melanie Weston. 2018. "A New Approach to Modeling Water Balance in Nile River Basin, Africa" Sustainability 10, no. 3: 810. https://doi.org/10.3390/su10030810
APA StyleBelete, M., Deng, J., Zhou, M., Wang, K., You, S., Hong, Y., & Weston, M. (2018). A New Approach to Modeling Water Balance in Nile River Basin, Africa. Sustainability, 10(3), 810. https://doi.org/10.3390/su10030810