Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective
Abstract
:1. Introduction
2. Aim and Scope
3. Methodology
3.1. Identifying Important Sustainability Indicators
- impacts addressed by the planetary boundaries (PB) framework [23],
- the default list of impact categories in the European guide for Product Environmental Footprints [24], and
- impacts covered by the United Nations Environmental Programme and Society of Environmental Toxicology and Chemistry UNEP-SETAC Life Cycle Initiative guide for social life cycle assessment [25].
3.2. Open Space Workshop
3.3. Inventory of Existing Life Cycle Studies
- “bio”, “biomass”, and “bio-based”, because they are common words in discussions of bio-based products,
- “forest” and “wood” because forestry is an important industry in Sweden,
- “bioenergy”, “biofuel”, “biogas”, “biodiesel”, “ethanol”, Hydrogenated vegetable oil “HVO” and Fatty Acid Methyl Esters “FAME”, because they denote the most common biofuels in Sweden [6], and
- “district heating”, because this is an important sector for the use of solid biofuel.
4. Results
4.1. Important Indicators
- from the PB framework [23]: climate change, stratospheric ozone depletion, chemical pollution, atmospheric aerosol concentration, nitrogen and phosphorus emissions, acidification of oceans, freshwater consumption, land-system change, and biodiversity loss;
- from the PEF guide [24]: climate change, ozone depletion, freshwater eco-toxicity, human toxicity (cancer and non-cancer impacts), emissions of particulate matter, human health impacts of radiation, photochemical ozone formation, acidification, eutrophication (terrestrial and aquatic), water depletion, depletion of fossil and mineral resources, and land transformation;
- from the UNEP-SETAC guide for SLCA [25]:
- ⚪
- impacts on workers: freedom of association, child labor, fair salary, working hours, forced labor, discrimination, health and safety, and social benefits and security;
- ⚪
- impacts on local community: access to material and immaterial resources, delocalization and migration, cultural heritage, safe and healthy living conditions, indigenous rights, community engagement, local employment, and secure living conditions;
- ⚪
- impacts on consumers: health and safety, feedback mechanisms, consumer privacy, transparency, and end-of-life responsibility;
- ⚪
- impacts on other value-chain actors: fair competition, social responsibility, supplier relationships, and intellectual property rights; and
- ⚪
- impacts on society overall: public commitments to sustainability issues, contribution to economic development, the prevention and mitigation of armed conflicts, technology development, and corruption.
4.2. Life Cycle Studies Identified
4.3. Indicators Present in Life Cycle Assessments
4.4. Indicators Present in LCCs
4.5. Indicators Present in Social LCAs
4.6. Indicators Present in Life Cycle Sustainability Assessments
5. Discussion
5.1. Why Important Indicators are Missing
5.2. The Need for Improved Indicator Modeling Methods
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Literature Search Details
Appendix A.1. Life Cycle Assessment (LCA)
Document Search Settings | Specification |
---|---|
Boolean string (article title, abstract, keywords) | “LCA” OR ”life cycle assessment” OR ”life cycle analysis” AND “bio” OR “biomass” OR “biobased” OR “forest” OR “wood” OR “biofuel” OR “biodiesel” OR “biogas” OR “ethanol” OR “HVO” OR “FAME” OR “bioenergy” OR “district heating” |
Date range (inclusive) published | 2000 to 2015 |
Country/territory limited to | Sweden |
Appendix A.2. Life Cycle Sustainability Assessment (LCSA)
Document Search Settings | Specification |
---|---|
Boolean string (article title, abstract, keywords) | “Life Cycle Sustainability Assessment” OR ”life cycle sustainability analysis” OR ”life cycle” OR “sustainability assessment” OR LCSA OR “sustainability analysis” OR “Economic” OR “social” OR “environmental” AND “bio” OR “biomass” OR “biobased” OR “forest” OR “wood” OR “biofuel” OR “biodiesel” OR “biogas” OR “ethanol” OR “HVO” OR “FAME” OR “bioenergy” OR “district heating” |
Date range (inclusive) published | 2000 to 2015 |
Country/territory limited to | Sweden, Norway, UK, Germany, Finland, Denmark, The Netherlands, Russia, USA, Poland, Portugal, Latvia, Estonia, Italy, China, Brazil, Australia, Indonesia, Ukraine, Lithuania. |
Appendix A.3. Life Cycle Costing (LCC)
Document Search Settings | Specification |
---|---|
Boolean string (article title, abstract, keywords) | “Life Cycle” OR “LCC” OR ”life cycle cost” OR ”life cycle costing” OR “Life Cycle Cost Analysis” OR LCCA OR “Life cycle cost assessment” OR “Life Cycle Economic Analysis” AND “bio” OR “biomass” OR “biobased” OR “forest” OR “wood” OR “biofuel” OR “biodiesel” OR “biogas” OR “ethanol” OR “HVO” OR “FAME” OR “bioenergy” OR “district heating” |
Date range (inclusive) published | 2000 to 2015 |
Country/territory limited to | Sweden, Norway, UK, Germany, Finland, Denmark, The Netherlands, Russia, USA, Poland, Portugal, Latvia, Estonia, Italy, China, Brazil, Australia, Indonesia, Ukraine, Lithuania. |
Appendix A.4. Social Life Cycle Assessment (SLCA)
Document Search Settings | Specification |
---|---|
Boolean string (article title, abstract, keywords) | “Life Cycle” OR “SLCA” OR ”social life cycle” OR ”life cycle assessment” OR “Socio-economic” OR S-LCA OR “life cycle analysis” OR “LCA” OR “social impacts” OR “social sustainability” AND “bio” OR “biomass” OR “biobased” OR “forest” OR “wood” OR “biofuel” OR “biodiesel” OR “biogas” OR “ethanol” OR “HVO” OR “FAME” OR “bioenergy” OR “district heating” |
Date range (inclusive) published | 2000 to 2015 |
Country/territory limited to | Sweden, Norway, UK, Germany, Finland, Denmark, The Netherlands, Russia, USA, Poland, Portugal, Latvia, Estonia, Italy, China, Brazil, Australia, Indonesia, Ukraine, Lithuania. |
Appendix A.5. Limitations for the Literature Search
Appendix A.5.1. The Forest Product Market (Forest Products are Here Defined as Products Derived from Forest Biomass)
Appendix A.5.2. The Biofuel Market
Appendix A.5.3. The Bioenergy Market
Appendix A.5.4. Date Range, Document Type, and Subject Areas
Appendix A.5.5. The Swedish Context
Appendix A.5.6. Criteria for Selection
- (1)
- Following the LCA methodology (excluding LCI studies),
- (2)
- focusing on biomass value chains (for example, the waste for district heating should be (mainly) bio-derived),
- (3)
- involving case studies (e.g., no review studies, discussions) and
- (4)
- following a peer-review process.
References
- EuropaBio. Building A Bio-Based Economy for Europe in 2020, EuropaBio Policy Guide; European Association for Bioindustries (EuropaBio): Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe; European Association for Bioindustries (EuropaBio): Brussels, Belgium, 2012. [Google Scholar]
- McCormick, K.; Kautto, N. The Bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef]
- Formas. Swedish Research and Innovation Strategy for a Bio-based Economy Report: R3:2012. Available online: http://www.formas.se/PageFiles/5074/Strategy_Biobased_Ekonomy_hela.pdf (accessed on 20 February 2018).
- Swedish Energy Agency. Drivmedel Och Biobränslen 2015—Mängder, Komponenter Och Ursprung Rapporterade I Enlighet Med Drivmedelslagen Och Hållbarhetslagen; ER 2016:12; Swedish Energy Agency: Stockholm, Sweden, 2016. [Google Scholar]
- Hedlund-de wit, A. An integral perspective on the (un)sustainability of the emerging bio-economy: Using the integrative worldview framework for illuminating a polarized societal debate. In Proceedings of the Integral Theory Conference, San Francisco, CA, USA, 18–21 July 2013. [Google Scholar]
- Lewandowski, I. Securing a sustainable biomass supply in a growing bioeconomy. Glob. Food Secur. 2015, 6, 34–42. [Google Scholar] [CrossRef]
- O’Brien, M.; Schütz, H.; Bringezu, S. The land footprint of the EU bioeconomy: Monitoring tools, gaps and needs. Land Use Policy 2015, 47, 235–246. [Google Scholar] [CrossRef]
- Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–94. [Google Scholar] [CrossRef]
- Guinée, J.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Finkbeiner, M.; Schau, E.M.; Lehmann, A.; Traverso, M. Towards life cycle sustainability assessment. Sustainability 2010, 2, 3309–3322. [Google Scholar] [CrossRef]
- Zamagni, A.; Pesonen, H.-L.; Swarr, T. From LCA to Life Cycle Sustainability Assessment: Concept, practice and future directions. Int. J. Life Cycle Assess. 2013, 18, 1637–1641. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Rugani, B. A revision of what life cycle sustainability assessment should entail: Towards modeling the Net Impact on Human Well-Being. J. Ind. Ecol. 2017, 21, 1464–1477. [Google Scholar] [CrossRef]
- Kühnen, M.; Hahn, R. Indicators in Social Life Cycle Assessment—A Review of Frameworks, Theories, and Empirical Experience. J. Ind. Ecol. 2017, 21, 1547–1565. [Google Scholar] [CrossRef]
- Lazarevic, D.; Martin, M. Life cycle assessments, carbon footprints and carbon visions: Analysing environmental systems analyses of transportation biofuels in Sweden. J. Clean. Prod. 2016, 137, 249–257. [Google Scholar] [CrossRef]
- Van der Voet, E.; Lifset, R.J.; Luo, L. Life-cycle assessment of biofuels, convergence and divergence. Biofuels 2010, 1, 435–449. [Google Scholar] [CrossRef]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Ecol. 2012, 16, S169–S181. [Google Scholar] [CrossRef]
- Von Blottnitz, H.; Curran, M.A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 2016, 15, 607–619. [Google Scholar]
- Janssen, M.; Xiros, C.; Tillman, A.M. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions. Biotechnol. Biofuels 2016, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pascual-González, J.; Guillén-Gosálbez, G.; Mateo-Sanz, J.M.; Jiménez-Esteller, L. Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. J. Clean. Prod. 2016, 112, 359–368. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Huijbregts, M.A.J. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- EC. Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. European Commission (EC). Off. J. Eur. Union 2013, 54, 124. [Google Scholar]
- Benoît, C.; Mazijn, B. (Eds.) Guidelines for Social Life Cycle Assessment of Products—A Social and Socio-Economic LCA Code of Practice Complementing Environmental LCA and Life Cycle Costing, Contributing to the Full Assessment of Goods and Services Within the Context of Sustainable Development; United Nations Environment Programme: Paris, France, 2009. [Google Scholar]
- Klöpffer, W.; Ciroth, A. Is LCC relevant in a sustainability assessment? Int. J. Life Cycle Assess. 2011, 16, 99–101. [Google Scholar] [CrossRef]
- Hannouf, M.; Assefa, G. Comments on the relevance of life cycle costing in sustainability assessment of product systems. Int. J. Life Cycle Assess. 2016, 21, 1059–1062. [Google Scholar] [CrossRef]
- Jørgensen, A.; Herrmann, I.T.; Bjørn, A. Analysis of the link between a definition of sustainability and the life cycle methodologies. Int. J. Life Cycle Assess. 2013, 18, 1440–1449. [Google Scholar] [CrossRef]
- Ekvall, T.; Ljungkvist, H.; Ahlgren, E.; Sandvall, A. Participatory Life Cycle Sustainability Analysis; Report B2268; IVL; Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Owen, H. Open Space Technology: A User’s Guide, 3rd ed.; Berrett-Koehler Publishers: San Fransisco, CA, USA, 2008. [Google Scholar]
- Zumsteg, J.M.; Cooper, J.S.; Noon, M.S. Systematic Review Checklist: A Standardized Technique for Assessing and Reporting Reviews of Life Cycle Assessment Data. J. Ind. Ecol. 2012, 16, S12–S21. [Google Scholar] [CrossRef] [PubMed]
- SLU. Forest Statistics 2015; Official Statistics of Sweden, Swedish University of Agricultural Sciences (SLU): Genevå, Switzerland, 2014. [Google Scholar]
- Ekvall, T. Open Space Workshop on Sustainability Indicators for Bio-Based Products; Report B238; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2017. [Google Scholar]
- Ren, J.; Manzardo, A.; Mazzi, A.; Zuliani, F.; Scipioni, A. Prioritization of bioethanol production pathways in China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. 2015, 20, 842–853. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Azapagic, A. Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. J. Clean. Prod. 2014, 80, 119–138. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Cozzo, G.; Latteri, A.; Recca, A.; Björklund, A.; Parrinello, E.; Cicala, G. Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. J. Clean. Prod. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Ekener-Petersen, E.; Höglund, J.; Finnveden, G. Screening potential social impacts of fossil fuels and biofuels for vehicles. Energy Policy 2014, 73, 416–426. [Google Scholar] [CrossRef]
- Souza, A.; Watanabe, M.D.B.; Cavalett, O.; Ugaya, C.M.L.; Bonomi, A. Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. Int. J. Life Cycle Assess. 2016, 23, 1–12. [Google Scholar] [CrossRef]
- Manik, Y.; Leahy, J.; Halog, A. Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. Int. J. Life Cycle Assess. 2013, 18, 1386–1392. [Google Scholar] [CrossRef]
- Weldegiorgis, F.; Franks, D. Social dimensions of energy supply alternatives in steelmaking: Comparison of biomass and coal production scenarios in Australia. J. Clean. Prod. 2014, 84, 281–288. [Google Scholar] [CrossRef]
- Hu, J.; Lei, T.; Wang, Z.; Wang, Y.X.; Shi, X.; Zaifeng, L.; Xiaofeng, H.; Zhang, Q. Economic, environmental and social assessment of briquette fuel from agricultural residues in China: A study on flat die briquetting using corn stalk. Energy 2014, 64, 557–566. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energ. Sustain. Dev. 2014, 2, 194–211. [Google Scholar] [CrossRef]
- Albrecht, S.; Brandstetter, P.; Beck, T.; Fullana-i-Palmer, P.; Grönman, K.; Baitz, M.; Deimling, S.; Sandilands, J.; Fischer, M. An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. Int. J. Life Cycle Assess. 2013, 18, 1549–1567. [Google Scholar] [CrossRef]
- Keller, H.; Rettenmaier, N.; Reinhardt, G.A. Integrated life cycle sustainability assessment—A practical approach applied to biorefineries. Appl. Energ. 2015, 154, 1072–1081. [Google Scholar] [CrossRef]
- Colodel, C.M.; Kupfer, T.; Barthel, L.P.; Albrecht, S. R&D decision support by parallel assessment of economic, ecological and social impact—Adipic acid from renewable resources versus adipic acid from crude oil. Ecol. Econ. 2009, 68, 1599–1604. [Google Scholar]
- Vinyes, E.; Oliver-Solà, J.; Ugaya, C.; Rieradevall, J.; Gasol, C.M. Application of LCSA to used cooking oil waste management. Int. J. Life Cycle Assess. 2013, 18, 445–455. [Google Scholar] [CrossRef]
- UN a. Goal 6: Access to Water and Sanitation for All. United Nations, 2017. Available online: http://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 14 November 2017).
- UN b. Goal 15: Sustainably Manage Forests, Combat Desertification, Halt and Reverse Land Degradation, Halt Biodiversity Loss. United Nations, 2015. Available online: http://www.un.org/sustainabledevelopment/biodiversity/ (accessed on 14 November 2017).
- SEPA. Swedish Environmental Objectives. Swedish Environmental Objectives; Swedish Environmental Protection Agency (SEPA): Stockholm, Sweden, 2015. [Google Scholar]
- SEPA a. Objective 9. Good-Quality Groundwater. Swedish Environmental Protection Agency. 2017. Available online: http://www.miljomal.se/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives/9-Good-Quality-Groundwater/ (accessed on 14 November 2017).
- SEPA b. Objective 16. A Rich Diversity of Plant and Animal Life. Swedish Environmental Protection Agency. 2017. Available online: http://www.miljomal.se/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives/16-A-Rich-Diversity-of-Plant-and-Animal-Life/ (accessed on 14 November 2017).
- SEPA c. Objective 11. Thriving Wetlands. Swedish Environmental Protection Agency. 2017. Available online: http://www.miljomal.se/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives/11-Thriving-Wetlands/. (accessed on 14 November 2017).
- SEPA d. Objective 12. Sustainable Forests. Swedish Environmental Protection Agency. 2017. Available online: http://www.miljomal.se/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives/12-Sustainable-Forests/ (accessed on 14 November 2017).
- SEPA e. Objective 13. A Varied Agricultural Landscape. Swedish Environmental Protection Agency. 2017. Available online: http://www.miljomal.se/Environmental-Objectives-Portal/Undre-meny/About-the-Environmental-Objectives/13-A-Varied-Agricultural-Landscape/ (accessed on 14 November 2017).
- De Baan, L.; Curran, M.A.; Rondinini, C.; Visconti, P.; Hellweg, S.; Koellner, T. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models. Environ. Sci. Technol. 2015, 49, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.F.M.; De Souza, D.M.; Curran, M.P.; Antón, A.; Michelsen, O.; Milá I Canals, L. Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J. Clean. Prod. 2016, 112, 4283–4287. [Google Scholar] [CrossRef]
- Martin, M.; Brandão, M. Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices. Sustainability 2017, 9, 2227. [Google Scholar] [CrossRef]
- Kløverpris, J.; Wenzel, H.; Nielsen, P.H. Life cycle inventory modeling of land use induced by crop consumption. Part 1: Conceptual analysis and methodological proposal. Int. J. Life Cycle Assess. 2008, 13, 13–21. [Google Scholar]
- Harnesk, D.; Brogaard, S. Social Dynamics of Renewable Energy—How the European Union’s Renewable Energy Directive Triggers Land Pressure in Tanzania. J. Env. Dev. 2016, 26, 156–185. [Google Scholar] [CrossRef]
- Martin, M.; Larsson, M.; Oliveira, F.; Rydberg, T. Reviewing the environmental implications of increased consumption and trade of biofuels for transportation in Sweden. Biofuels 2017, 1–15. [Google Scholar] [CrossRef]
- SLU. Official Statistics of Sweden & Swedish University of Agricultural Sciences Umeå (SLU). In Forest Statistics 2015; The Swedish University of Agricultural Sciences: Uppsala, Sweden, 2015. [Google Scholar]
- Swedish Forest Agency. Skogsstatistisk årsbok 2014 [Swedish Statistical Yearbook of Forestry]. Available online: https://www.skogsstyrelsen.se/globalassets/statistik/historisk-statistik/skogsstatistisk-arsbok-2010-2014/skogsstatistisk-arsbok-2014.pdf (accessed on 20 February 2018).
- Bioenergiportalen. Andelen Biodrivmedel ökar. [The Share of Biofuels Is Increasing]. Available online: http://www.bioenergiportalen.se/?p=1443 (accessed on 21 January 2015).
- Svebio. The Swedish Experience. How bioenergy became the largest energy source in Sweden. Available online: https://www.svebio.se/sites/default/files/Bioenergy%20in%20Sweden_web.pdf (accessed on 10 March 2016).
- SEPA. Import Och Export Av Avfall 2004–2013 [Import and Export of Waste 2004–2013. Swedish Environmental Protection Agency (SEPA). Available online: https://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Avfall-import-och-export-2004-2013/# (accessed on 23 February 2016).
- Swedish Energy Agency. Analys Av Marknaderna FöR Biodrivmedel. Tema: Fordonsgasmarknaden. [Analysis of the Biofuel Markets. Theme: The Biofuel Market]. Available online: https://www.energimyndigheten.se/globalassets/nyheter/2013/analys-av-marknaderna-for-biodrivmedel.pdf 2013 (accessed on 24 February 2016).
- Swedish Energy Agency. Hållbara Biodrivmedel Och Flytande BiobräNslen 2014. [Sustainable Biofuels and Liquid Bioenergy 2014]. Available online: https://energimyndigheten.se.2014 (accessed on 23 November 2015).
Indicator | Selected for Group Discussion | Yes-Votes | No-Votes |
---|---|---|---|
Climate impact | yes | 12 | 0 |
Biodiversity | yes | 10 | 0 |
Working conditions | yes | 10 | 0 |
Water use | yes | 9 | 0 |
Ecosystem functions | no | 9 | 1 |
Resource use | yes | 7 | 0 |
Emissions of particulates | yes | 2 | 0 |
Odor | no | 4 | 1 |
Human health | no | 3 | 0 |
Corruption/Human rights | yes, as a joint topic | 3 | 0 |
Regional value creation | no | 2 | 0 |
Resource availability | no | 0 | 0 |
Eutrophication | no | 0 | 0 |
Intragenerational and intergenerational human well-being | yes | 2 | 3 |
Feedstock Types | LCA | LCC | SLCA | LCSA | Total |
---|---|---|---|---|---|
Wood | 21 (+ 10) | 7 (+ 3) | 2 | 2 | 32 (+ 13) |
Food crop | 15 (+ 9) | 6 (+ 2) | 4 | 1 | 26 (+ 11) |
Non-food crop | 5 (+ 8) | 3 (+ 2) | 0 | 1 | 9 (+ 10) |
Algae | 1 | 1 | 0 | 0 | 2 |
Animal-based | 1 | 0 | 0 | 0 | 1 |
Waste | 3 (+ 4) | 2 (+ 2) | 0 | 1 | 6 (+ 6) |
Manure | 0 (+ 3) | 1 (+ 2) | 0 | 0 | 1 (+ 5) |
Wool | 0 | 1 | 0 | 0 | 1 |
Not specified | 1 | 5 | 0 | 1 | 7 |
Product Type | LCA | LCC1 | SLCA | LCSA | Total |
---|---|---|---|---|---|
Energy | 37 | 21 | 7 | 2 | 67 |
Construction | 5 | 3 | 0 | 0 | 8 |
Commodity | 19 | 5 | 0 | 3 | 27 |
Mixed | 2 | 2 | 0 | 1 | 5 |
Impact Category | No. of studies | % of studies | PB framework | PEF guide | Open Space |
---|---|---|---|---|---|
Climate change | 63 | 100% | exp. | exp. | exp. |
Energy use | 44 | 70% | imp. | imp. | |
Acidification | 35 | 56% | imp. | exp. | |
Eutrophication | 34 | 54% | imp. | exp. | |
Photochemical oxidant formation | 21 | 33% | exp. | ||
Direct land use change | 18 | 29% | exp. | exp. | imp. |
Direct land use | 13 | 21% | imp. | imp. | |
Toxicity impacts | 8 | 13% | imp. | exp. | |
Abiotic depletion | 7 | 11% | exp. | imp. | |
Ozone depletion | 6 | 10% | exp. | ||
Particles | 4 | 6% | imp. | exp. | |
Human health | 3 | 5% | imp. | imp. | |
Ecosystem quality | 3 | 5% | imp. | imp. | exp. |
Resources | 3 | 5% | exp. | exp. | |
Indirect land use change | 2 | 3% | exp. | exp. | |
Water depletion | 2 | 3% | exp. | exp. | exp. |
Resource use | 1 | 2% | exp. | exp. | |
Biodegradability | 1 | 2% | |||
Gross calorific values | 1 | 2% | |||
Human health damage by particles and ozone | 1 | 2% | imp. | imp. | |
Biodiversity | 0 | 0% | exp. | exp. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.; Røyne, F.; Ekvall, T.; Moberg, Å. Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective. Sustainability 2018, 10, 547. https://doi.org/10.3390/su10020547
Martin M, Røyne F, Ekvall T, Moberg Å. Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective. Sustainability. 2018; 10(2):547. https://doi.org/10.3390/su10020547
Chicago/Turabian StyleMartin, Michael, Frida Røyne, Tomas Ekvall, and Åsa Moberg. 2018. "Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective" Sustainability 10, no. 2: 547. https://doi.org/10.3390/su10020547
APA StyleMartin, M., Røyne, F., Ekvall, T., & Moberg, Å. (2018). Life Cycle Sustainability Evaluations of Bio-based Value Chains: Reviewing the Indicators from a Swedish Perspective. Sustainability, 10(2), 547. https://doi.org/10.3390/su10020547