Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Ecosystem Services Assessment
2.2.1. Soil Conservation (SC)
2.2.2. Water Yield (WY)
2.2.3. Crop Production (CP)
2.3. Driving Scenario Settings
2.4. Data Preparation
3. Result
3.1. Land Use and Climate Changes
3.1.1. Land Use Change
3.1.2. Climate Change
3.2. The Ecosystem Service Change in Different Scenarios
3.2.1. ScenarioI: Climate Change
3.2.2. Land Use Change
3.2.3. ScenarioIII: Land Use and Climate Change
4. Discussion
4.1. The Effect of Land Use and Climate Change on Regional ES
- (1)
- Soil conservation: under the different land use transfer directions, the soil conversation shows different quantity and structure response characteristics correspondingly. It is worth pointing out that from 2000 to 2015, with the conversion of bare land and cultivated land to forest, grassland, the sediment output decreased and the soil conservation increased on the whole with the area increase of the forest. While the forest is only 1/2 of the grassland area but it contributes 46% of the soil conservation capacity, the area increase of the forest also promotes the overall increase of the regional soil conservation.
- (2)
- Water yield: seen from ES composition from 1990 to 2015, the forest ecosystems transferred out more water yield than transferred-in, which was mainly transferred to built-up land and bare land due to the forest loss during 1990–2000. While after 2000, water yield of forest decreased although the area increased 1392 km2, especially in scenarioII. This is largely because of the higher evapotranspiration coefficient of the forest than other ecosystem types. This conclusion is similar with the research conducted by Li in Miyun, who pointed out that the expansion of forest land will significantly reduce the water yield of the basin [80]. The water yield of grassland decreased slightly with the land use change and climate change in three scenarios but it is still the biggest water yield pool in the studied area and the conservation of grassland to wetland increased the water yield of wetland rapidly from 2000–2015, especially the Zoige wetland. Therefore, as an important water conservation area in the source of the Yangtze River and the Yellow River, grassland and wetland are important ecological land, which is of great value for water conservation.
- (3)
- Crop production: the impact of land use change to the crop production is obvious, according to Figure 3, the crop production varied dramatically. With the increase of grassland coverage, low coverage grassland gradually changed to middle and high coverage grassland from 2000 to 2015, the grassland in Shiqu, Dege County located in the northwest not only have an improvement in water yield but also the crop production obviously. Besides, the crop production of forest in the south and east of the region, such as Xiahe County, Zoige County promoted significantly due to the less disturbance after 2000, in where the giant panda protection project and natural forest protection project were widely implemented.
4.2. Strategies to Sustainable Use the Regional ES
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MEA. Ecosystems and Human well-being: Biodiversity synthesis. World Resour. Inst. 2005, 42, 77–101. [Google Scholar]
- Ouyang, Z.Y.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Dietz, T.; Kramer, D.B.; Ouyang, Z.; Liu, J. An integrated approach to understanding the linkages between ecosystem services and human well-being. Ecosyst. Health Sustain. 2016, 1, 1–12. [Google Scholar] [CrossRef]
- Groot, R.S.D.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Schröter, M.; Zanden, E.H.; Oudenhoven, A.P.E.; Remme, R.P.; Serna-Chavez, H.M.; Groot, R.S.; Opdam, P. Ecosystem Services as a Contested Concept: A Synthesis of Critique and Counter-Arguments. Conserv. Lett. 2015, 7, 514–523. [Google Scholar] [CrossRef]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem Services in Decision Making: Time to Deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef]
- Vargo, S.L.; Wieland, H.; Akaka, M.A. Innovation through institutionalization: A service ecosystems perspective. Ind. Mark. Manag. 2015, 44, 63–72. [Google Scholar] [CrossRef]
- Medvigy, D.; Wofsy, S.C.; Munger, J.W.; Hollinger, D.Y.; Moorcroft, P.R. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res. Biogeosci. 2015, 114, 270–271. [Google Scholar] [CrossRef]
- Hein, L.; Koppen, C.S.A.V.; Ierland, E.C.V.; Leidekker, J. Temporal scales, ecosystem dynamics, stakeholders and the valuation of ecosystems services. Ecosyst. Serv. 2016, 21, 109–119. [Google Scholar] [CrossRef]
- IPOC. Climate Change 2014 Synthesis Report. Environ. Policy Collect. 2014, 27, 408. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Finlayson, M.; Cruz, R.D.; Davidson, N.; Alder, J.; Cork, S.; Groot, R.S.; Lévêque, C.; Milton, G.R.; Peterson, G. Millennium Ecosystem Assessment: Ecosystems and human well-being: Wetlands and water synthesis. Data Fusion Concepts Ideas 2005, 656, 87–98. [Google Scholar]
- Chazdon, R.L. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Mumby, P.J.; Hooten, A.J.; Steneck, R.S.; Greenfield, P.; Gomez, E.; Harvell, C.D.; Sale, P.F.; Edwards, A.J.; Caldeira, K. Coral Reefs under Rapid Climate Change and Ocean Acidification. Science 2007, 318, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Gómezbaggethun, E.; Groot, R.D.; Lomas, P.L.; Montes, C.; Pascual, U.; Corbera, E.; Muradian, R.; Kosoy, N. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Defries, R.S.; Díaz, S.; Dietz, T.; Duraiappah, A.K.; Otengyeboah, A.; Pereira, H.M. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wang, J. Evaluation on effect of land consolidation on habitat quality based on InVEST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 250–255. [Google Scholar]
- Kueppers, L.M.; Snyder, M.A. Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Clim. Dyn. 2012, 38, 1017–1029. [Google Scholar] [CrossRef]
- Grünewald, C.; Schleuning, M.; Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 2016, 201, 60–68. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Deng, X.; Yuan, Y.; Wang, Z.; Li, Z. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Palomo, I.; Martín-López, B.; Alcorlo, P.; Montes, C. Limitations of Protected Areas Zoning in Mediterranean Cultural Landscapes Under the Ecosystem Services Approach. Ecosystems 2014, 17, 1202–1215. [Google Scholar] [CrossRef]
- Mcdowell, N.G.; Bowling, D.R.; Bond, B.J.; Irvine, J.; Law, B.E.; Anthoni, P.M.; Ehleringer, J.R. Response of the carbon isotopic content of ecosystem, leaf, and soil respiration to meteorological driving factors in a Pinus ponderosa ecosystem. Glob. Biogeochem. Cycles 2004, 18, GB1013. [Google Scholar] [CrossRef]
- Fu, B.J.; He, L.Y. Major Research Progresses on the Ecosystem Service and Ecological Safety of Main Terrestrial Ecosystems in China. Chin. J. Nat. 2012, 34, 261–272. [Google Scholar]
- Su, C.H.; Fu, B.J.; He, C.S.; Lü, Y.H. Variation of ecosystem services and human activities. Acta Oecol. 2012, 44, 46–57. [Google Scholar] [CrossRef]
- Laurance, W.F.; Fearnside, P.M.; Vasconcelos, H.L.; Ferreira, L.V. Deforestation in Amazonia. Science 2004, 304, 1109–1111. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Andrade, A.C.; Fearnside, P.M.; Ribeiro, J.E.L.; Capretz, R.L. Rain Forest Fragmentation and The Proliferation of Successional Trees. Ecology 2006, 87, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.; Turner, R.K.; Fish, R.; Turner, R.K. Routledge Handbook of Ecosystem Services; Routledge: Abingdon-on-Thames, UK, 2015. [Google Scholar]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Braat, L.C.; Brink; Klok, T.C. The Cost of Policy Inaction. The Case of Not Meeting the 2010 Biodiversity Target. Available online: http://www.globio.info/downloads/85/Report%20-%20Braat%20&%20ten%20Brink%20eds%20%282008%29%20The%20Cost%20of%20Policy%20Ina.pdf (accessed on 1 February 2018).
- Nelson, E.J.; Kareiva, P.; Ruckelshaus, M.; Arkema, K.; Geller, G.; Girvetz, E.; Goodrich, D.; Matzek, V.; Pinsky, M.; Reid, W. Climate change’s impact on key ecosystem services and the human well-being they support in the US. Front. Ecol. Environ. 2013, 11, 483–493. [Google Scholar] [CrossRef]
- Shaw, M.R.; Pendleton, L.; Cameron, D.R.; Morris, B.; Bachelet, D.; Klausmeyer, K.; Mackenzie, J.; Conklin, D.R.; Bratman, G.N.; Lenihan, J. The impact of climate change on California’s ecosystem services. Clim. Chang. 2012, 110, 1067. [Google Scholar] [CrossRef]
- Lamarque, P.; Lavorel, S.; Mouchet, M.; Quétier, F. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proc. Natl. Acad. Sci. USA 2014, 111, 13751–13756. [Google Scholar] [CrossRef] [PubMed]
- Bangash, R.F.; Passuello, A.; Sanchez-Canales, M.; Terrado, M.; Lopez, A.; Elorza, F.J.; Ziv, G.; Acuna, V.; Schuhmacher, M. Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control. Sci. Total Environ. 2013, 458, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.Q.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Rocca, M.E.; Brown, P.M.; MacDonald, L.H.; Carrico, C.M. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. For. Ecol. Manag. 2014, 327, 290–305. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef]
- Seidl, R.; Spies, T.A.; Peterson, D.L.; Stephens, S.L.; Hicke, J.A. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J. Appl. Ecol. 2016, 53, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Schröter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araújo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A. Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.; Li, X.; Liu, H.; Chi, D.; Xu, K. The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Mendozagonzález, G.; Martínez, M.L.; Lithgow, D.; Pérezmaqueo, O.; Simonin, P. Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Carreño, L.; Frank, F.C.; Viglizzo, E.F. Tradeoffs between economic and ecosystem services in Argentina during 50 years of land-use change. Agric. Ecosyst. Environ. 2012, 154, 68–77. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Whitehead, P.; Wolf, J.; Rahman, M.; Salehin, M. The Ganges-Brahmaputra-Meghna delta system: Biophysical models to support analysis of ecosystem services and poverty alleviation. Environ. Sci. Processes Impacts 2015, 17, 1016–1017. [Google Scholar] [CrossRef] [PubMed]
- Bagstad, K.J.; Reed, J.M.; Semmens, D.J.; Sherrouse, B.C.; Troy, A. Linking biophysical models and public preferences for ecosystem service assessments: A case study for the Southern Rocky Mountains. Reg. Environ. Chang. 2016, 16, 1–14. [Google Scholar] [CrossRef]
- Lavorel, S.; Bayer, A.; Bondeau, A.; Lautenbach, S.; Ruiz-Frau, A.; Schulp, N.; Seppelt, R.; Verburg, P.; Teeffelen, A.V.; Vannier, C. Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecol. Indic. 2017, 74, 241–260. [Google Scholar] [CrossRef]
- Wang, X.F.; Yin, L.C.; Zhang, Y. Discussion on Some Issues of Ecological Barrier. Ecol. Environ. Sci. 2016, 25, 2035–2040. [Google Scholar]
- Liu, S.R.; Wang, J.X.; Chen, L.W. Ecology and restoration of sub-alpine ecosystem in western Sichuan, China. Inf. Bot. Ital. 2003, 35, 29–34. [Google Scholar]
- Qiu, L.; Wang, L.J.; Zhao, L.; Tang, X.J.; Fu-Hua, L.I.; Wang, S.Y. Evaluation of Economic Losses from Damage of Grassland Ecosystem in Sichuan Province. Sichuan Environ. 2012, 6, 16. [Google Scholar]
- Dong, L.X.; Hong, C.S.; Quan, C.Y.; Sheng, G.W.; Yue Cun, M.A.; Li, M.A. Evaluation of the multi-cropping ecosystem services under conservation tillage paddy field in Sichuan basin. Acta Ecol. Sin. 2006, 26, 3782–3788. [Google Scholar]
- Yong, G.W.; Shi, C.C.; Qiu, P.F. Remote sensing monitoring of sand expansion at fragile grassland ecosystem in Ruoergai Plateau, Sichuan, China. Southwest China J. Agric. 1998, 2, 15. [Google Scholar]
- Zhao, H.F.; Ming, X.U. Estimating the Values of Forest Ecosystems in Conserving Rare and Endangered Animals in Sichuan Province. J. Nat. Resour. 2016, 31, 789–799. [Google Scholar]
- Ji, Y.; Liang, X.Y.; Yi, J. Review on Protection of Zoigê Grassland Ecosystem. China Herbiv. Sci. 2012, 6, 11. [Google Scholar]
- Yu, D.S.; Ran, B.; He, G. Study on the causes and Countermeasures of ecological problems in the high mountain areas of Northwest Sichuan. Tour. Overv. 2014, 24, 220–224. [Google Scholar]
- Pei, W.Z.; Li, J.; Wang, H.; Li, Y. Choices of Environmental Strategy and Policy on the Fragile Ecological Areas of Northwest Sichuan Province. Soft Sci. 2012, 26, 45. [Google Scholar]
- MEPC. China’s National Ecological Fragile Zone Protection Plan; Ministry of Environment Protection of the People’s Republic of China (MEPC): Beijing, China, 2008; Volume 92.
- Liu, J.H.; Gao, J.X.; Ma, S.; Wang, W.J.; Zou, C.X. Evaluation of Ecological Sensitivity in China. J. Nat. Resour. 2015, 30, 1607–1616. [Google Scholar]
- Wang, X.L.; Su, C.J.; Peng, L.; Wang, H.E.; Wang, H.M.; Liu, W.; Li, P.; Fang, Y. Ecological suitability assessment and introduction experiment on Rosa damascena trigintipetala in Sichuan Province, China. J. Mt. Sci. 2014, 11, 805–815. [Google Scholar] [CrossRef]
- Han, G.; Zhao, K.; Yuan, X.; Sun, R. Evaluation of Ecological Sensitivity in Mountain Area Based on Spatial Analysis—A Case Study of Wanyuan City in Sichuan Province. J. Mt. Sci. 2008, 5, 6. [Google Scholar]
- Zhang, Y. Study on Evaluation of Rural Ecological Environment and Its Influencing Factors in Sichuan Province. J. Agric. Sci. 2012, 4, 23. [Google Scholar] [CrossRef]
- Tian, S.C.; Liu, S.H. Characteristics of Geologic Hazards and Causes Analysis of Ebian Yi Autonomous County of Sichuan Province. Jilin Water Resour. 2015, 1, 12. [Google Scholar]
- Liu, J.; Li, T.B. The features and mechanism of geologic hazards and control measures in DongXing district of NeiJiang, Sichuan Province. J. Geol. Hazards Environ. Preserv. 2007, 1, 15. [Google Scholar]
- Duan, L.P.; Zheng, W.M.; Li, M.H.; Deng, G.S.; Yang, G.H. Geologic hazards on the western Sichuan plateau and their controls. Sediment. Geol. Tethyan Geol. 2005, 25, 95–98. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B. Terrestrial ecosystem production: A process modelbased on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Joly, C.; Lonsdale, W.; Ash, N. The IPBES Conceptual Framework-232 connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Thaman, R.; Lyver, P.; Mpande, R.; Perez, E.; Cariño, J.; Takeuchi, K. The contribution of indigenous and local knowledge systems to IPBES: Building synergies with Science. Eur. Psychiatry 2013, 13, 246s. [Google Scholar]
- Covich, A.P. On Frank Golley’s International and Interdisciplinary Insights for a Twenty-First Century Earth Stewardship Based on Environmental Ethics; Springer International Publishing: Cham, Switzerland, 2015; pp. 431–450. [Google Scholar]
- Fu, B.J.; Yu, D.D. Trade-off analyses and synthetic integrated method of multiple ecosystem services. Resour. Sci. 2016, 38, 1–9. [Google Scholar]
- Wang, C.L.; Zhang, Y.L.; Wang, Z.F.; Bai, W.Q. Changes of Wetland Ecosystem Service Value in the LhasaRiver Basin of Tibetan Plateau. Resour. Sci. 2010, 32, 2038–2044. [Google Scholar]
- Geng, X.; Wang, X.; Yan, H.; Zhang, Q.; Jin, G. Land use/land cover change induced impacts on water supply service in the upper reach of Heihe River Basin. Sustainability 2014, 7, 366–383. [Google Scholar] [CrossRef]
- Wang, Y.K.; Fu, B.; Xu, P. Evaluation the impact of earthquake on ecosystem services. Procedia Environ. Sci. 2012, 13, 954–966. [Google Scholar] [CrossRef]
- Huang, C.H. Ecosystem Services Evaluation Based on the InVEST Model: Case Studies in Baoxing County, Sichuan and Mentougou District; Beijing Forestry University: Beijing, China, 2014. [Google Scholar]
- Yuan, Z.F. Dynamics Evaluation of Ecosystem Services Based on InVEST Model in Baoxing County, Sichuan Province, China; Hunan University of Science and Technology: Hunan, China, 2014. [Google Scholar]
- Qiao, W.; Sheng, Y.; Fang, B. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geogr. Res. 2013, 32, 1497–1507. [Google Scholar]
- Xia, N.; Tiyip, T.; Nurmemet, I.; Gao, Y. Remote Sensing Monitoring for Assessing Vegetation Coverage in East Juggar Desert of Xinjiang. Environ. Sci. Technol. 2017, 4, 8. [Google Scholar]
- Han, Y.; Jia, H. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecol. Model. 2016, 353, 107–116. [Google Scholar] [CrossRef]
- Huang, J. Utilization of Returning Farmland to Forest in Resettlement of Shuangjiangkou Hydropower Station Project in Aba Prefecture. Mod. Agric. Sci. Technol. 2012, 19, 102. [Google Scholar]
- Aijm, V.D.; Keenan, R.J. Planted forests and water in perspective. For. Ecol. Manag. 2007, 251, 1–9. [Google Scholar]
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.F.; Ge, Q.S.; Min, X.W.; Wang, X.F. Modelling the integrated effects of land use and climate change scenarios on forest aboveground biomass:A case study in Taihe County of China. J. Geogr. Sci. 2017, 27, 205–222. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
Period | Land Use Type | Cultivated Land | Forest | Grassland | Wetland | Built up-Land | Bare Land | Transfer-out Area |
---|---|---|---|---|---|---|---|---|
1990–2015 | Cultivated land | 3287 | 148 | 479 | 22 | 48 | 5 | 703 |
Forest | 330 | 74958 | 3605 | 140 | 27 | 43 | 4145 | |
Grassland | 558 | 5491 | 143,088 | 1406 | 123 | 1050 | 8628 | |
Wetland | 8 | 42 | 616 | 5240 | 3 | 16 | 684 | |
Built-up Land | 5 | 2 | 8 | 2 | 131 | 0 | 17 | |
Bare Land | 1 | 110 | 1639 | 99 | 0 | 12,548 | 1851 | |
Transfer-in | 902 | 5793 | 6348 | 1669 | 202 | 1114 | - | |
1990–2000 | Cultivated land | 3865 | 54 | 63 | 4 | 4 | 1 | 125 |
Forest | 144 | 77,609 | 1250 | 54 | 17 | 29 | 1495 | |
Grassland | 276 | 1600 | 149,392 | 131 | 35 | 285 | 2328 | |
Wetland | 5 | 31 | 130 | 5743 | 1 | 14 | 181 | |
Built-up Land | 3 | 1 | 4 | 0 | 140 | 0 | 8 | |
Bare Land | 104 | 66 | 259 | 22 | 3 | 13,946 | 453 | |
Transfer-in | 533 | 1751 | 1705 | 211 | 61 | 329 | - | |
2000–2015 | Cultivated land | 3534 | 193 | 492 | 22 | 49 | 107 | 863 |
Forest | 288 | 75,853 | 2972 | 147 | 26 | 74 | 3506 | |
Grassland | 354 | 4498 | 143,821 | 1348 | 113 | 959 | 7273 | |
Wetland | 7 | 86 | 545 | 5292 | 3 | 21 | 662 | |
Built-up Land | 4 | 18 | 33 | 3 | 141 | 3 | 60 | |
Bare Land | 2 | 103 | 1573 | 98 | 0 | 12,499 | 1776 | |
Transfer-in | 655 | 4898 | 5615 | 1617 | 192 | 1164 | - |
YEAR | Crop Land | Forest | Grassland | Wetland | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | |
1990 | 2.27 | 1.92 | 0.73 | 65.35 | 42.28 | 16.86 | 74.69 | 74.91 | 30.35 | 0.69 | 2.40 | 1.06 |
1995 | 2.13 | 1.80 | 0.75 | 62.91 | 39.23 | 16.64 | 71.38 | 71.64 | 30.44 | 0.63 | 2.14 | 1.05 |
2000 | 2.22 | 1.88 | 0.80 | 62.37 | 38.86 | 16.86 | 69.10 | 68.86 | 30.11 | 0.67 | 2.12 | 1.06 |
2005 | 2.17 | 1.85 | 0.77 | 61.97 | 38.54 | 16.55 | 70.78 | 68.59 | 30.19 | 0.64 | 2.28 | 1.05 |
2010 | 2.21 | 1.82 | 0.77 | 61.11 | 38.62 | 17.13 | 68.81 | 68.50 | 29.66 | 0.78 | 2.49 | 1.10 |
2015 | 2.27 | 1.86 | 0.77 | 61.05 | 38.20 | 17.13 | 68.14 | 67.67 | 29.68 | 0.87 | 2.74 | 1.09 |
YEAR | Crop Land | Forest | Grassland | Wetland | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | |
1990 | 2.31 | 1.92 | 0.73 | 65.35 | 42.28 | 16.86 | 74.69 | 74.91 | 30.35 | 0.69 | 2.40 | 1.06 |
1995 | 2.34 | 1.98 | 0.76 | 64.76 | 41.91 | 16.74 | 75.35 | 75.40 | 30.68 | 0.68 | 2.38 | 1.06 |
2000 | 2.45 | 2.10 | 0.81 | 64.73 | 42.05 | 16.85 | 74.47 | 74.54 | 29.94 | 0.64 | 2.42 | 1.05 |
2005 | 2.35 | 2.01 | 0.78 | 66.91 | 41.87 | 16.47 | 75.47 | 75.36 | 30.14 | 0.67 | 2.38 | 1.04 |
2010 | 2.36 | 2.03 | 0.82 | 68.39 | 41.35 | 17.57 | 73.81 | 74.47 | 30.89 | 0.85 | 2.73 | 1.26 |
2015 | 2.36 | 2.01 | 0.80 | 68.37 | 41.34 | 17.27 | 73.87 | 74.42 | 30.03 | 0.93 | 2.88 | 1.28 |
Year | Crop Land | Forest | Grassland | Wetland | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | SC (106 t) | WY (109 m3) | CP (106 t) | |
1990 | 2.31 | 1.92 | 0.73 | 65.35 | 42.28 | 16.86 | 74.02 | 74.91 | 30.35 | 0.68 | 2.40 | 1.06 |
1995 | 2.18 | 1.81 | 0.75 | 64.59 | 39.32 | 15.89 | 70.97 | 71.65 | 30.60 | 0.62 | 2.14 | 1.05 |
2000 | 2.24 | 1.88 | 0.63 | 63.11 | 38.67 | 16.13 | 68.80 | 68.85 | 29.61 | 0.66 | 2.12 | 0.85 |
2005 | 2.20 | 1.86 | 0.61 | 63.36 | 38.63 | 16.24 | 71.29 | 72.41 | 28.73 | 0.63 | 2.28 | 0.84 |
2010 | 2.21 | 1.83 | 0.93 | 65.71 | 39.18 | 16.38 | 68.66 | 68.30 | 28.77 | 0.77 | 2.44 | 1.46 |
2015 | 2.27 | 1.88 | 0.63 | 65.63 | 39.25 | 16.43 | 69.89 | 69.45 | 28.65 | 0.86 | 2.68 | 1.33 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Sun, G.; Zhang, N.; He, J.; Wu, N. Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China. Sustainability 2018, 10, 467. https://doi.org/10.3390/su10020467
Tang Z, Sun G, Zhang N, He J, Wu N. Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China. Sustainability. 2018; 10(2):467. https://doi.org/10.3390/su10020467
Chicago/Turabian StyleTang, Zhonglin, Geng Sun, Nannan Zhang, Jing He, and Ning Wu. 2018. "Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China" Sustainability 10, no. 2: 467. https://doi.org/10.3390/su10020467
APA StyleTang, Z., Sun, G., Zhang, N., He, J., & Wu, N. (2018). Impacts of Land-Use and Climate Change on Ecosystem Service in Eastern Tibetan Plateau, China. Sustainability, 10(2), 467. https://doi.org/10.3390/su10020467