Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Rice Yield
2.3. Chemicals
2.4. Free Phenolics
2.5. Bound Phenolics
2.6. Total Phenolic Content (TPC)
2.7. Total Flavonoid Content (TFC)
2.8. Antioxidant Activities
2.8.1. DPPH Radical Scavenging Activity
2.8.2. Reducing Power
2.9. Total Anthocyanin Content (TAC)
2.10. Proline Content
2.11. Statistical Analysis
3. Results
3.1. Grain Yield Components
3.2. Grain Macronutrients and Quality
3.3. Total Anthocyanin (TAC) and Proline Contents
3.4. Total Phenolic (TPC) and Total Flavonoid Contents (TFC)
3.5. Antioxidant Activity
3.6. Correlation among Quality Traits, Phytochemical Contents, and Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouman, B.A.M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; Da Rosa, E.F.; van Kessel, C. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Linquist, B.; van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Belder, P.; Spiertz, J.H.J.; Bouman, B.A.M.; Lu, G.; Tuong, T.P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res. 2005, 93, 169–185. [Google Scholar] [CrossRef]
- Zain, N.A.M.; Ismail, M.R.; Puteh, A.; Mahmood, M.; Islam, M.R. Impact of cyclic water stress on growth, physiological responses and yield of rice (Oryza sativa L.) grown in tropical environment. Cienc. Rural 2014, 44, 2136–2141. [Google Scholar] [CrossRef]
- Kitta, K.; Ebihara, M.; Iizuka, T.; Yoshikawa, R.; Isshiki, K.; Kawamoto, S. Variations in lipid content and fatty acid composition of major non-glutinous rice cultivars in Japan. J. Food Compos. Anal. 2005, 18, 269–278. [Google Scholar] [CrossRef]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redona, E.; McCouch, S.R. Genomic selection and association mapping in rice (Oryza sativa L.): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2015, 11, e1004982. [Google Scholar]
- Fofana, M.; Cherif, M.; Kone, B.; Futakuchi, K.; Audebert, A. Effect of water deficit at grain repining stage on rice grain quality. J. Agric. Biotechnol. Sustain. Dev. 2010, 2, 100–107. [Google Scholar]
- Pandey, A.; Kumar, A.; Pandey, D.S.; Thongbam, P.D. Rice quality under water stress. Indian J. Adv. Plant Res. 2014, 1, 23–26. [Google Scholar]
- Cheng, W.; Zhang, G.; Zhao, G.; Yao, H.; Xu, H. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Res. 2003, 80, 245–252. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourali, O.; Asghari, F.S.; Yoshida, H. Production of phenolic compounds from rice bran biomass under subcritical water conditions. Chem. Eng. J. 2010, 160, 259–266. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem. 2014, 143, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Hosseinian, F.S.; Li, W.; Beta, T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008, 109, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Thomas, H. Accumulation and consumption of solutes in swards of Lolium perenne during drought and after rewatering. New Phytol. 1991, 118, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, H.W.; Farrant, J.M. Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul. 1998, 24, 203–210. [Google Scholar] [CrossRef]
- Goffman, F.D.; Bergman, C.J. Rice kernel phenolic content and its relationship with antiradical efficiency. J. Sci. Food Agric. 2004, 84, 1235–1240. [Google Scholar] [CrossRef]
- Mia, S.; Liu, H.; Wang, X.; Lu, Z.; Yan, G. Rresponse of wheat to post-anthesis water stress, and the nature of gene action as revealed by combining ability analysis. Crop Pasture Sci. 2017, 68, 534–543. [Google Scholar] [CrossRef]
- Ekanayake, I.J.; de Datta, S.K.; Steponkus, P.L. Spikelet sterility and flowering response of rice to water stress at anthesis. Ann. Bot. 1989, 63, 257–264. [Google Scholar] [CrossRef]
- Wu, N.; Guan, Y.; Shi, Y. Effect of water stress on physiological traits and yield in rice backcross lines after anthesis. Energy Procedia 2011, 5, 255–260. [Google Scholar] [CrossRef]
- Robins, J.S.; Domingo, C.E. Some effects of severe soil moisture deficits at specific growth stages of corn. Agron. J. 1953, 45, 612–621. [Google Scholar] [CrossRef]
- Shandhu, B.S.; Horton, M.L. Response of oats to water deficit. I. Physiological characteristics. Agron. J. 1977, 69, 357–360. [Google Scholar]
- Aspinall, D.; Nicholls, P.B.; May, L.H. The effects of soil moisture stress on the growth of barley. 1. Vegetative development and grain yield. Aust. J. Agric. Res. 1964, 15, 729–745. [Google Scholar] [CrossRef]
- Gauthami, P.; Subrahmanyam, D.; Padma, V.; Rao, P.R.; Voleti, S.R. Influence of simulated post-anthesis water stress on stem dry matter remobilization, yield and its component in rice. Ind. J. Plant Physiol. 2013, 18, 177–182. [Google Scholar] [CrossRef]
- Quan, N.T.; Anh, L.H.; Khang, D.T.; Tuyen, P.T.; Toan, N.P.; Minh, T.N.; Minh, L.T.; Bach, D.T.; Ha, P.T.T.; Elzaawely, A.A.; et al. Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture 2016, 6, 23. [Google Scholar] [CrossRef]
- Pang, Y.; Ali, J.; Wang, X.; Franje, N.J.; Revilleza, J.E.; Xu, J.; Li, Z. Relationship of rice grain amylose, gelatinization temperature and pasting properties for breeding better eating and cooking quality of rice varieties. PLoS ONE 2016, 11, e0168483. [Google Scholar] [CrossRef] [PubMed]
- Ti, H.; Zhang, R.; Zhang, M.; Li, Q.; Wei, Z.; Zhang, Y.; Ma, Y. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem. 2014, 161, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity. Food Chem. 2007, 103, 486–494. [Google Scholar]
- Singh, R.; Kumari, N. Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. A valuable medicinal tree. Ind. Crops Prod. 2015, 73, 1–8. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F.J. Quantitative methods for anthocyanins and degradation of total juice anthocyanin index for Cranberry. J. Food Sci. 1968, 33, 78–83. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Sandhu, N.; Kumar, A. Bridging the rice yield gaps under drought: QTLs, genets, and their use in breeding program. Agronomy 2017, 2, 27. [Google Scholar] [CrossRef]
- Food Agriculture Organization. The Impact of Natural Hazards and Disasters on Agriculture and Food and Nutrition Security: A Call for Action to Build Resilient Livelihoods; FAO: Rome, Italy, 2015. [Google Scholar]
- Sabetfar, S.; Ashouri, M.; Amiri, E.; Babazadeh, S. Effect of drought stress at differeng growth stages on yield and yield component of rice plant. Persian Gulf Crop Prot. 2013, 2, 14–18. [Google Scholar]
- Sepaskhah, A.R.; Yousofi-Falakdehi, A. Interaction between the effects of deficit irrigation and water salinity on yield and yield components of rice in pot experiment. Plant Prod. Sci. 2009, 12, 168–175. [Google Scholar] [CrossRef]
- Renmin, W.; Yuanshu, D. Studies on ecological factors of rice from heading to maturity. I. Effect of different soil moisture content on fertilization, grain-filling and grain quality of early Indica rice. J. Zhejiang Univ. Sci. 1989, 2, 011. [Google Scholar]
- Dingkuhn, M.; LeGal, P.Y. Effect of drainage date on yield and dry matter partitioning in irrigated rice. Field Crops Res. 1996, 46, 117–126. [Google Scholar] [CrossRef]
- Ishima, T. Effect of nitrogenous fertilizer application and protein content in milled rice on organoleptic quality of cooked rice. Rep. Natl. Food Res. Inst. 1974, 29, 9–15. [Google Scholar]
- Shen, P.; Luo, Q.X.; Jin, Z.X. Relationship between protein content and the cooking and eating quality propreties of rice grain. J. Northeast Agric. Univ. 2003, 34, 368–371. [Google Scholar]
- Shipp, J. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.; Young, M.J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Sutharut, J.; Sudarat, J. Total anthocyanin content and antioxidant activity of germinated colored rice. Int. Food Res. J. 2012, 19, 215–221. [Google Scholar]
- Ashraf, M.F.M.R.; Foolad, M. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Kavi Kishor, P.B.; Sreenivasulu, N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014, 37, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Ashraf, U.; He, L.X.; Mo, Z.W.; Wang, F.; Wan, X.C.; Tang, X.R. Irrigation and nitrogen management practices affect grain yield and 2-acetyl-1-pyrroline content in aromatic rice. Appl. Ecol. Environ. Res. 2017, 15, 1447–1460. [Google Scholar] [CrossRef]
- Nichols, S.N.; Hofmann, R.W.; Williams, W.M. Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ. Exp. Bot. 2015, 119, 40–47. [Google Scholar] [CrossRef]
- Callaway, R.M.; Vivanco, J.M. Can plant biochemistry contribute to understanding of invasion ecology? Trends Plant Sci. 2006, 11, 574–580. [Google Scholar]
- Sumczynski, D.; Kotásková, E.; Družbíková, H.; Mlček, J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chem. 2016, 211, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, X.; Huang, L. Correlation bewteen antioxidant activities and phenolic contents of Radix Angelicae Sinesis (Danggui). Molecules 2009, 14, 5349–5361. [Google Scholar] [CrossRef] [PubMed]
Variety | Treatments | Filled Grain (Number/Panicle) | Filled Grain (%) | Weight of 100-Seeds (g) | Grain Weight per Pot (g) |
---|---|---|---|---|---|
K1 | W1 | 146.0 a | 98.0 a | 2.1 a | 56.8 a |
W2 | 143.0 a | 92.7 ab | 1.8 b | 54.8 a | |
W3 | 130.0 a | 87.5 b | 1.7 b | 33.9 b | |
K2 | W1 | 130.0 a | 98.4 a | 2.6 a | 50.3 a |
W2 | 127.0 a | 91.8 ab | 2.5 a | 48.8 a | |
W3 | 118.0 a | 84.4 b | 2.4 b | 40.3 b | |
K3 | W1 | 199.0 a | 98.1 a | 1.9 a | 95.0 a |
W2 | 210.0 a | 86.9 b | 1.8 ab | 64.5 b | |
W3 | 206.0 a | 80.4 b | 1.7 b | 45.3 b | |
ANOVA | |||||
Variety | * | * | * | * | |
Treatment | NS | * | * | * |
Variety | Treatments | Protein% | Amylose% | Fatty Acid% |
---|---|---|---|---|
K1 | W1 | 6.83 ± 0.78 b | 22.43 ± 0.44 a | 7.67 ± 3.18 a |
W2 | 8.63 ± 0.80 ab | 19.14 ± 0.57 b | 5.00 ± 0.58 a | |
W3 | 9.70 ± 0.28 a | 17.56 ± 0.60 b | 9.67 ± 2.73 a | |
K3 | W1 | 6.53 ± 0.46 b | 22.30 ± 1.00 a | 8.33 ± 3.84 a |
W2 | 8.30 ± 0.60 ab | 19.10 ± 1.10 ab | 9.00 ± 0.57 a | |
W3 | 10.16 ± 0.60 a | 16.33 ± 0.88 b | 10.00 ± 1.00 a | |
K4 | W1 | 6.63 ± 0.68 b | 22.00 ± 0.72 a | 4.33 ± 0.88 a |
W2 | 9.46 ± 0.48 a | 21.50 ± 1.50 a | 4.00 ± 0.00 a | |
W3 | 9.93 ± 0.60 a | 18.20 ± 1.10 a | 3.66 ± 0.33 a | |
ANOVA | ||||
Variety | NS | NS | * | |
Treatment | * | * | NS |
Variety | Treatments | TAC (mg Cyanidin-3-Glucoside Equivalent/100 g DW) | Proline Content (µmoles/g DW) |
---|---|---|---|
K1 | W1 | 20.27 ± 0.80 c | 4.10 ± 1.50 b |
W2 | 25.30 ± 2.40 b | 5.30 ± 2.60 b | |
W3 | 36.00 ± 0.70 a | 6.40 ± 1.90 a | |
K3 | W1 | 16.40 ± 2.60 c | 3.30 ± 0.80 b |
W2 | 28.80 ± 2.40 ab | 4.00 ± 0.70 a | |
W3 | 35.00 ± 1.60 b | 4.30 ± 0.50 a | |
K4 | W1 | 20.93 ± 2.20 b | 2.10 ± 0.10 b |
W2 | 26.40 ± 0.70 b | 3.00 ± 0.20 b | |
W3 | 35.50 ± 3.50 a | 3.40 ± 0.60 a | |
ANOVA | |||
Variety | NS | * | |
Treatment | * | * |
Variety | Treatments | Phenolics (mg GAE/100 g DW) | Flavonoids (mg RE/100 g DW) | ||
---|---|---|---|---|---|
Free | Bound | Free | Bound | ||
K1 | W1 | 21.26 ± 3.60 a | 21.10 ± 2.80 b | 10.55 ± 0.44 a | 12.22 ± 1.61 a |
W2 | 26.26 ± 3.20 a | 23.93 ± 9.70 b | 9.55 ± 0.44 a | 11.39 ± 1.17 a | |
W3 | 33.43 ± 5.50 a | 39.80 ± 19.60 a | 10.22 ± 10 a | 20.06 ± 4.97 a | |
K3 | W1 | 23.10 ± 1.80 a | 13.40 ± 0.50 b | 8.88 ± 0.16 a | 12.72 ± 2.78 a |
W2 | 21.43 ± 1.50 a | 43.90 ± 11.10 a | 9.55 ± 0.6 a | 17.89 ± 3.49 a | |
W3 | 25.26 ± 5.20 a | 48.90 ± 17.80 a | 9.05 ± 0.44 a | 17.22 ± 5.25 a | |
K4 | W1 | 23.43 ± 4.60 a | 16.26 ± 3.40 b | 9.05 ± 0.83 a | 10.55 ± 0.72 a |
W2 | 22.93 ± 1.80 a | 35.26 ± 4.80 ab | 9.72 ± 0 a | 12.39 ± 1.42 a | |
W3 | 29.43 ± 2.20 a | 50.9 ± 10.90 a | 10 ± 00.167 a | 16.22 ± 1.61 a | |
ANOVA | |||||
Variety | NS | NS | NS | NS | |
Treatment | NS | * | NS | NS |
Variety | Treatments | DPPH | Reducing Power |
---|---|---|---|
(IC50 mg/mL) | (IC50 mg/mL) | ||
W1 | 9.06 ± 8.40 a | 12.8 ± 2.36 a | |
K1 | W2 | 5.56 ± 2.90 b | 9.53 ± 2.62 ab |
W3 | 3.71 ± 0.40 b | 7.47 ± 0.37 b | |
W1 | 13.27 ± 11.70 a | 17.73 ± 3.02 a | |
K3 | W2 | 9.75 ± 5.90 ab | 15.86 ± 3.86 a |
W3 | 6.00 ± 1.30 b | 9.55 ± 0.62 b | |
W1 | 11.36 ± 40 a | 18.40 ± 2.95 a | |
K4 | W2 | 9.46 ± 3.50 b | 15.60 ± 2.33 a |
W3 | 8.16 ± 1.60 b | 13.95 ± 0.98 b | |
ANOVA | |||
Variety | * | * | |
Treatment | * | * |
Protein% | Amylose% | Fatty Acid% | TPC | TFC | DPPH% | RP% | PC | TAC | |
---|---|---|---|---|---|---|---|---|---|
Protein% | 1 | ||||||||
Amylose% | −0.84 ** | 1 | |||||||
Fatty acid% | 0.04 | −0.36 | 1 | ||||||
TPC | 0.88 ** | −0.82 ** | 0.17 | 1 | |||||
TFC | 0.64 | −0.78 | 0.62 | 0.78 * | 1 | ||||
DPPH% | 0.39 | −0.31 | −0.20 | 0.56 | 0.25 | 1 | |||
RP% | 0.88 ** | −0.87 ** | 0.20 | 0.83 ** | 0.68 * | 0.23 | 1 | ||
PC | 0.43 | −0.60 | 0.53 | 0.28 | 0.58 | −0.51 | 0.57 | 1 | |
TAC | 0.92 *** | −0.91 *** | 0.18 | 0.93 *** | 0.81 ** | 0.37 | 0.86 ** | 0.49 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayee, R.; Tran, H.-D.; Xuan, T.D.; Khanh, T.D. Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain. Sustainability 2018, 10, 4843. https://doi.org/10.3390/su10124843
Rayee R, Tran H-D, Xuan TD, Khanh TD. Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain. Sustainability. 2018; 10(12):4843. https://doi.org/10.3390/su10124843
Chicago/Turabian StyleRayee, Ramin, Hoang-Dung Tran, Tran Dang Xuan, and Tran Dang Khanh. 2018. "Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain" Sustainability 10, no. 12: 4843. https://doi.org/10.3390/su10124843
APA StyleRayee, R., Tran, H.-D., Xuan, T. D., & Khanh, T. D. (2018). Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain. Sustainability, 10(12), 4843. https://doi.org/10.3390/su10124843