Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study
Abstract
1. Introduction
2. Ozone in General Disinfection and Water Treatment
Antibacterial Properties
3. Ozone in Agriculture
4. The Use of Ozone in Animal Husbandry and Fish Farming
- -
- Reduction of the load of bacteria, viruses, protozoa and fungi pathogenic to fish;
- -
- Elimination of colloidal substances suspended in the water and removal of dissolved organic substances that can stress the fish;
- -
- Removal of ammonia and nitrites that may be toxic to fish;
- -
- Increased growth rate (faster growth of fish);
- -
- Increase in food conversion factor (food transfer factor), resulting in a decrease in the amount of food to achieve the same percentage increase;
- -
- Greater fish production achievable with the same structures (epidemics caused by a certain pathogen can cause production losses ranging from 20% to 70%);
- -
- Fish product obtained at a lower cost and therefore more competitive.
5. A Case Study in Animal Husbandry
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doppelt, B. Leading Change toward Sustainability: A Change-Management Guide for Business, Government and Civil Society; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Benn, S.; Edwards, M.; Williams, T. Organizational Change for Corporate Sustainability; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Smith, H.; Fingar, P. Business Process Management: The Third Wave; Meghan-Kiffer Press: Tampa, FL, USA, 2003; Volume 1. [Google Scholar]
- Schaltegger, S.; Wagner, M. Sustainable entrepreneurship and sustainability innovation: Categories and interactions. Bus. Strategy Environ. 2011, 20, 222–237. [Google Scholar] [CrossRef]
- Dangelico, R.M.; Pujari, D. Mainstreaming green product innovation: Why and how companies integrate environmental sustainability. J. Bus. Ethics 2010, 95, 471–486. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Stolle, A.; Stelter, M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 2018, 6, 6358–6369. [Google Scholar] [CrossRef]
- Millar, C.; Hind, P.; Magala, S. Sustainability and the need for change: Organisational change and transformational vision. J. Organ. Chang. Manag. 2012, 25, 489–500. [Google Scholar] [CrossRef]
- Bocci, V. How Does Ozone Act? How and Why Can We Avoid Ozone Toxicity? Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Seidler, V.; Linetskiy, I.; Hubálková, H.; Stankova, H.; Smucler, R.; Mazánek, J. Ozone and its usage in general medicine and dentistry. A review article. Prague Med. Rep. 2008, 109, 5–13. [Google Scholar] [PubMed]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. Appl. Phys. 1987, 20, 1421. [Google Scholar] [CrossRef]
- Garamoon, A.A.; Elakshar, F.F.; Nossair, A.M.; Kotp, E.F. Experimental study of ozone synthesis. Plasma Sources Sci. Technol. 2002, 11, 254. [Google Scholar] [CrossRef]
- Ma, H.; Qiu, Y. A study of ozone synthesis in coaxial cylinder pulse streamer corona discharge reactors. Ozone Sci. Eng. 2003, 25, 127–135. [Google Scholar] [CrossRef]
- Pietsch, G.J.; Gibalov, V.I. Dielectric barrier discharges and ozone synthesis. Pure Appl. Chem. 1998, 70, 1169–1174. [Google Scholar] [CrossRef]
- Bojkov, R.D. International Ozone Commission: History and Activities; IAMAS Publication Series: Bavaria, Germany, 2012. [Google Scholar]
- Bojkov, R.D. Surface ozone during the second half of the nineteenth century. J. Clim. Appl. Meteorol. 1986, 25, 343–352. [Google Scholar] [CrossRef]
- Rubin, M.B. The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- Braslavsky, S.E.; Rubin, M.B. The history of ozone Part VIII. Photochemical formation of ozone. Photochem. Photobiol. Sci. 2011, 10, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.B. The History of Ozone. Part III: CD Harries and the Introduction of Ozone into Organic Chemistry. Helv. Chim. Acta 2003, 86, 930–940. [Google Scholar] [CrossRef]
- Bocci, V. Biological and clinical effects of ozone. Has ozone therapy a future in medicine? Br. J. Biomed. Sci. 1999, 56, 270. [Google Scholar]
- Kowalski, W.J.; Bahnfleth, W.P.; Whittam, T.S. Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng. 1998. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42. [Google Scholar] [CrossRef]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Loeb, B.L. Ozone: Science & Engineering: Thirty-three years and growing. Ozone Sci. Eng. 2011, 33, 329–342. [Google Scholar]
- Von Gunten, U. The basics of oxidants in water treatment. Part B: Ozone reactions. Water Sci. Technol. 2007, 55. [Google Scholar] [CrossRef]
- Loeb, B.L.; Thompson, C.M.; Drago, J.; Takahara, H.; Baig, S. Worldwide ozone capacity for treatment of drinking water and wastewater: A review. Ozone Sci. Eng. 2012, 34, 64–77. [Google Scholar] [CrossRef]
- Glaze, W.H. Drinking-water treatment with ozone. Environ. Sci. Technol. 1987, 21, 224–230. [Google Scholar] [CrossRef]
- Rice, R.G.; Robson, C.M.; Miller, G.W.; Hill, A.G. Uses of ozone in drinking water treatment. J.-Am. Water Works Assoc. 1981, 73, 44–57. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987. [Google Scholar] [CrossRef]
- Ciambrone, D.F. Ozone Oxidation of Waste Water. U.S. Patent 4,007,118, 8 February 1977. [Google Scholar]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide. Sci. Total Environ. 1981, 18, 245–261. [Google Scholar] [CrossRef]
- Haag, W.R.; Hoigné, J. Ozonation of water containing chlorine or chloramines. Reaction products and kinetics. Water Res. 1983, 17, 1397–1402. [Google Scholar] [CrossRef]
- Palermi, S.; Pitari, G.; Visconti, G. Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J. Geophys. Res.: Atmos. 1992, 97, 5953–5962. [Google Scholar]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Pascual, A.; Llorca, I.; Canut, A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci. Technol. 2007, 18, S29–S35. [Google Scholar] [CrossRef]
- Bott, T.R. Ozone as a disinfectant in process plant. Food Control 1991, 2, 45–49. [Google Scholar] [CrossRef]
- Remondino, M. The use of ozone as a driver for economic and environmental sustainable development. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Czekalski, N.; Imminger, S.; Salhi, E.; Veljkovic, M.; Kleffel, K.; Drissner, D.; Hammes, F.; Bürgmann, H.; Von Gunten, U. Inactivation of antibiotic resistant bacteria and resistance genes by ozone: From laboratory experiments to full-scale wastewater treatment. Environ. Sci. Technol. 2016, 50, 11862–11871. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Allende, A.; López-Gálvez, F.; Conesa, M.A.; Gil, M.I. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol. 2008, 25, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Roche, P.; Joret, J.-C.; Paillard, H. Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution. Water Res. 1997, 31, 650–656. [Google Scholar] [CrossRef]
- Volk, C.; Renner, C.; Roche, P.; Paillard, H.; Joret, J.C. Effects of ozone on the production of biodegradable dissolved organic carbon (BDOC) during water treatment. Ozone Sci. Eng. 1993, 15, 389–404. [Google Scholar] [CrossRef]
- Bablon, G.; Bellamy, W.D.; Billen, G.; Bourbigot, M.-M.; Daniel, B.; Erb, F.; Gomella, C.; Gordon, G.; Hartemann, P.; Joret, J.C. Practical application of ozone: Principles and case studies. Ozone Water Treat. Appl. Eng. 1991, xvii, 569. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Mahfoudh, A.; Barbeau, J.; Moisan, M.; Leduc, A.; Séguin, J. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Appl. Surf. Sci. 2010, 256, 3063–3072. [Google Scholar] [CrossRef]
- Elford, W.J.; van den Ende, J. An investigation of the merits of ozone as an aerial disinfectant. Epidemiol. Infect. 1942, 42, 240–265. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol. Technol. 2008, 49, 10–18. [Google Scholar] [CrossRef]
- Loreto, F.; Mannozzi, M.; Maris, C.; Nascetti, P.; Ferranti, F.; Pasqualini, S. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol. 2001, 126, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.; Tigan, M.; Sculean, A. Effect of ozone on periodontopathogenic species—An in vitro study. Clin. Oral Investig. 2012, 16, 537–544. [Google Scholar] [CrossRef]
- Lee, J.; Deininger, R.A. Survival of bacteria after ozonation. Ozone Sci. Eng. 2000. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Boorman, G.A. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207. [Google Scholar] [PubMed]
- Plewa, M.J.; Wagner, E.D.; Jazwierska, P.; Richardson, S.D.; Chen, P.H.; McKague, A.B. Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ. Sci. Technol. 2004, 38, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hei, R.D.; Guange-jong, J.W.; Cords, B.R.; Lokkesmoe, K.D. Potentiated Aqueous Ozone Cleaning and Sanitizing Composition for Removal of a Contaminating Soil from A surface. U.S. Patent US5567444A, 22 October 1996. [Google Scholar]
- Mallmann, W.L.; Kain, C.H.; Schaefer, R.J. Apparatus and Method for Sanitizing. U.S. Patent US2388753A, 13 November 1945. [Google Scholar]
- Blanc, D.S.; Carrara, P.; Zanetti, G.; Francioli, P. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: Seven years of experience in a university teaching hospital. J. Hosp. Infect. 2005, 60, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, P.H.; Whittaker, R.E.; Kreiling, R.L.; Howell, C.L. Efficacy of ozone in eradication of Legionella pneumophila from hospital plumbing fixtures. Appl. Environ. Microbiol. 1982, 44, 1330–1333. [Google Scholar] [PubMed]
- Brûlet, A.; Nicolle, M.-C.; Giard, M.; Nicolini, F.-E.; Michallet, M.; Jarraud, S.; Etienne, J.; Vanhems, P. Fatal nosocomial Legionella pneumophila infection due to exposure to contaminated water from a washbasin in a hematology unit. Infect. Control Hosp. Epidemiol. 2008, 29, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Woo, A.H.; Victor, L.Y.; Goetz, A. Potential in-hospital modes of transmission of Legionella pneumophila. Demonstration experiments for dissemination by showers, humidifiers, and rinsing of ventilation bag apparatus. Am. J. Med. 1986, 80, 567–573. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, T.; Wang, Y.; Li, J. Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus). Food Chem. 2012, 135, 2915–2921. [Google Scholar] [CrossRef]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of ozone for enhancing the microbiological safety and quality of foods: A review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef] [PubMed]
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT-Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Bucks, D.A.; Nakayama, F.S.; Gilbert, R.G. Trickle irrigation water quality and preventive maintenance. Agric. Water Manag. 1979, 2, 149–162. [Google Scholar] [CrossRef]
- Newman, S.E. Disinfecting irrigation water for disease management. In Proceedings of the 20th Annual Conference on Pest Management on Ornamentals, San Jose, CA, USA, 20–22 February 2004; pp. 20–22. [Google Scholar]
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef]
- Lagerkvist, B.J.; Bernard, A.; Blomberg, A.; Bergstrom, E.; Forsberg, B.; Holmstrom, K.; Karp, K.; Lundstrom, N.-G.; Segerstedt, B.; Svensson, M. Pulmonary epithelial integrity in children: Relationship to ambient ozone exposure and swimming pool attendance. Environ. Health Perspect. 2004, 112, 1768. [Google Scholar] [CrossRef] [PubMed]
- Zwiener, C.; Richardson, S.D.; De Marini, D.M.; Grummt, T.; Glauner, T.; Frimmel, F.H. Drowning in disinfection byproducts? Assessing swimming pool water. Environ. Sci. Technol. 2007, 41, 363–372. [Google Scholar] [CrossRef]
- Boeniger, M.F. Use of ozone generating devices to improve indoor air quality. Am. Ind. Hyg. Assoc. J. 1995, 56, 590–598. [Google Scholar] [CrossRef]
- Clavo, B.; Pérez, J.L.; López, L.; Suárez, G.; Lloret, M.; Rodríguez, V.; Macías, D.; Santana, M.; Morera, J.; Fiuza, D. Effect of ozone therapy on muscle oxygenation. J. Altern. Complement. Med. 2003, 9, 251–256. [Google Scholar] [CrossRef]
- Bocci, V.; Di Paolo, N. Oxygen-ozone therapy in medicine: An update. Blood Purif. 2009, 28, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.D.; Hackney, J.D.; Clark, K.; Posin, C. Ozone and human blood. Arch. Environ. Health Int. J. 1975, 30, 40–43. [Google Scholar] [CrossRef]
- Wong, C.-M.; Ma, S.; Hedley, A.J.; Lam, T.-H. Does ozone have any effect on daily hospital admissions for circulatory diseases? J. Epidemiol. Community Health 1999, 53, 580. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Fortino, V.; Bocci, V. The dual action of ozone on the skin. Br. J. Dermatol. 2005, 153, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Jekel, M.R. Flocculation effects of ozone. Ozone Sci. Eng. 1994, 16, 55–66. [Google Scholar] [CrossRef]
- Jun, Y.; Lu, S.; Ding, Y. Treatment of Simulated Dyeing Wastewater by Modified Red Mud Flocculation-Ozone Oxidation Process. Environ. Prot. Chem. Ind. 2010, 4. [Google Scholar] [CrossRef]
- Sliter, J.T. Ozone: An alternative to chlorine? J. Water Pollut. Control Fed. 1974, 4–6. [Google Scholar]
- Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health Part B 2007, 10, 559–573. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Farooq, S.; Akhlaque, S. Comparative response of mixed cultures of bacteria and virus to ozonation. Water Res. 1983, 17, 809–812. [Google Scholar] [CrossRef]
- Reckhow, D.A.; Knocke, W.R.; Kearney, M.J.; Parks, C.A. Oxidation of iron and manganese by ozone. Ozone Sci. Eng. 1991, 13, 675–695. [Google Scholar] [CrossRef]
- Giunta, R.; Coppola, A.; Luongo, C.; Sammartino, A.; Guastafierro, S.; Grassia, A.; Giunta, L.; Mascolo, L.; Tirelli, A.; Coppola, L. Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann. Hematol. 2001, 80, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Häußler, U. Effect of Ozone/Oxygen-Pneumoperitoneum on Tumour Growth and Metastatic Spread of the Rabbit VX2 Head and Neck Cancer Model. Philipps-Universität Marburg: Marburg, Germany, 2009. Available online: http://archiv.ub.uni-marburg.de/diss/z2009/0028 (accessed on 14 December 2018).
- Valdenassi, L.; Franzini, M.; Garbelli, P.; Camolese, M. Oxygen-ozone activity in making factory farms antibiotic-free for prevention of antibiotic resistance. Ozone Ther. 2016, 1, 42–44. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Franzini, M.; Valdenassi, L.; Ionita, G. First evaluations of oxygen-ozone therapy in antibiotic-resistant infections. Ozone Ther. 2016, 1, 5–7. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Amábile-Cuevas, C.F.; Cars, O.; Evans, T.; Heymann, D.L.; Hoffman, S.; Holmes, A.; Mendelson, M.; Sridhar, D.; Woolhouse, M. UN High-Level Meeting on antimicrobials—What do we need? Lancet 2016, 388, 218–220. [Google Scholar] [CrossRef]
- Jasovskỳ, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial resistance—A threat to the world’s sustainable development. Upsal. J. Med. Sci. 2016, 121, 159–164. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Skov, R.L.; Monnet, D.L. Plasmid-mediated colistin resistance (mcr-1 gene): Three months later, the story unfolds. Eurosurveillance 2016, 21, 30155. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Cheng, L.; Selorm, A.L.; Yuan, F. An Overview of Ozone Research. J. Adv. Oxid. Technol. 2018, 21, 297–302. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, K.; Gao, M.; Shi, C.; Ge, C.; Qu, D.; Zhu, J.; Shi, Y.; Han, J. Inactivation of Vibrio parahaemolyticus by Aqueous Ozone. J. Microbiol. Biotechnol. 2018, 28, 1233–1246. [Google Scholar] [PubMed]
- NULL Franzini: “L’ozono può Sconfiggere i Superbatteri”; ZENIT Italia: San Cesario sul Panaro, Italy, 2016.
- Wolf, C.; von Gunten, U.; Kohn, T. Virus inactivation by ozone: Kinetics and influence of water quality parameters. In Proceedings of the IWA International Symposium on Health-Related Water Microbiology, Chapel Hill, NC, USA, 15–19 May 2017. [Google Scholar]
- Marcelino, R.B.; Leão, M.M.; Lago, R.M.; Amorim, C.C. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manag. 2017, 195, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Sacco, G.; Campus, G. The treatment of periodontal disease using local oxygen-ozone. Ozone Ther. 2017, 1, 45–52. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Mann, R.M.; Hyne, R.V.; Choung, C.B.; Wilson, S.P. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ. Pollut. 2009, 157, 2903–2927. [Google Scholar] [CrossRef]
- Weil, C.S.; McCollister, D.D. Safety evaluation of chemicals, relationship between short-and long-term feeding studies in designing an effective toxicity test. J. Agric. Food Chem. 1963, 11, 486–491. [Google Scholar] [CrossRef]
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 2001, 160, 27–33. [Google Scholar] [CrossRef]
- Pope, C.N. Organophosphorus pesticides: Do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health B Crit. Rev. 1999, 2, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Vozmilov, A.G.; Ilimbetov, R.Y.; Astafev, D.V. The usage of ozone in agriculture technological processes. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Nürnberger, T.; Brunner, F. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol. 2002, 5, 318–324. [Google Scholar] [CrossRef]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Den Nijs, L.; Hockland, S.; Maafi, Z.T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–43. [Google Scholar]
- Msayleb, N.; Ibrahim, S. Treatment of nematodes with ozone gas: A sustainable alternative to nematicides. Phys. Procedia 2011, 21, 187–192. [Google Scholar] [CrossRef]
- Margni, M.; Rossier, D.; Crettaz, P.; Jolliet, O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric. Ecosyst. Environ. 2002, 93, 379–392. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Sopher, C.D.; Graham, D.M.; Rice, R.G.; Strasser, J.H. Studies on the use of ozone in production agriculture and food processing. In Proceedings of the International Ozone Association, Pan American Group, Raleigh-Durham, NC, USA, 18–22 May 2002; pp. 1–15. [Google Scholar]
- Tai, P.L. Ozone Injection System for a Livestock Building. U.S. Patent US5983834A, 16 November 1999. [Google Scholar]
- Mallakian, S.; Rezanezhad, R.; Jalali, M.; Ghobadi, F. The effect of ozone gas on destruction and detoxification of aflatoxin. Agric. Eng. Lett. 2017, 1, 9–16. [Google Scholar]
- Correa, R. Method for Improving Conditions in a Poultry Grow out Facility Prior to Placing Chicks by Means of Ozone. U.S. Patent US20160015846A1, 21 January 2016. [Google Scholar]
- Elliott, K.A.; Kenny, C.; Madan, J. A Global Treaty to Reduce Antimicrobial Use in Livestock; Center for Global Development: Washington, DC, USA, 2017. [Google Scholar]
- Yanqiu, L.; Dongfeng, H.; Xingang, Y.; Xuejun, Y.; Liangxing, B.; Yong, X.; Meili, W.; Guodong, X.; Yongfu, Z.; Chunmei, L. Ozone Disinfection Test in Chicken House. Anim. Husb. Feed Sci. 2018, 10, 97–98. [Google Scholar]
- Wolf, C.; von Gunten, U.; Kohn, T. Inactivation of enteric viruses by ozone. In Proceedings of the Gordon Research Seminar, Environmental Sciences Water: Opportunities for Aquatic Sciences to Impact a Changing World, Holderness, NH, USA, 22–27 June 2016. [Google Scholar]
- Biswas, S.K.; Jana, C.; Chand, K.; Rehman, W.; Mondal, B. Detection of fowl poxvirus integrated with reticuloendotheliosis virus sequences from an outbreak in backyard chickens in India. Vet. Ital. 2011, 47, 147–153. [Google Scholar] [PubMed]
- Tothill, I.E.; Turner, A.P.F. New developments and opportunities in the diagnosis of livestock diseases. Livest. Dis. Diagn. 1998, 21, 79–94. [Google Scholar]
- Powell, A.; Chingombe, P.; Lupatsch, I.; Shields, R.J.; Lloyd, R. The effect of ozone on water quality and survival of turbot (Psetta maxima) maintained in a recirculating aquaculture system. Aquac. Eng. 2015, 64, 20–24. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. LWT-Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Burger, M.R. Air Purification Electrostatic Charcoal Filter and Method. U.S. Patent US4244710A, 13 January 1981. [Google Scholar]
- Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today 2000, 63, 363–369. [Google Scholar] [CrossRef]
- Babando, P. Ozone therapy in dentistry: Clinical experiences. Ozone Ther. 2017, 2. [Google Scholar] [CrossRef]
- Almeida, A.; Cunha, Â.; Gomes, N.; Alves, E.; Costa, L.; Faustino, M.A. Phage therapy and photodynamic therapy: Low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 2009, 7, 268–313. [Google Scholar] [CrossRef]
- Forneris, G.; Bellardi, S.; Palmegiano, G.B.; Saroglia, M.; Sicuro, B.; Gasco, L.; Zoccarato, I. The use of ozone in trout hatchery to reduce saprolegniasis incidence. Aquaculture 2003, 221, 157–166. [Google Scholar] [CrossRef]
- Crisinel, P.; Prost, L.; Bon, L. Method for Improving Conditions in Closed Circuit Fish Farming. U.S. Patent US6722314B1, 20 April 2004. [Google Scholar]
- Liltved, H.; Hektoen, H.; Efraimsen, H. Inactivation of bacterial and viral fish pathogens by ozonation or UV irradiation in water of different salinity. Aquac. Eng. 1995, 14, 107–122. [Google Scholar] [CrossRef]
- Powell, A.; Scolding, J.W. Direct application of ozone in aquaculture systems. Rev. Aquac. 2018, 10, 424–438. [Google Scholar] [CrossRef]
- DJuričić, D.; Valpotić, H.; Samardžija, M. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge. Anim. Reprod. Sci. 2015, 159, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Özlem Enginler, S.; Sabuncu, A.; Başaran Kahraman, B.; Koçak, Ö.; Yıldar, E.; Güzel, Ö. Comparison of intramammary ozone administration doses in dairy cows with clinical mastitis. Acta Sci. Vet. 2015, 43, 1260. [Google Scholar]
- Soares, C.; Weber, A.; Moecke, E.S.; Reiter, M.G.; Scussel, V.M.; De Souza, C.K. Use of Ozone Gas as a Green Control Alternative to Beetles Alphitobius diaperinus (Panzer) Infestation in Aviary Bed Utilized in the Poultry Industry. Chem. Eng. Trans. 2018, 64, 589–594. [Google Scholar]
- Zargaran, M.; Fatahinia, M.; Mahmoudabadi, A.Z. The efficacy of gaseous ozone against different forms of Candida albicans. Curr. Med. Mycol. 2017, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, O.; Sazgarnia, A.; Abbasi, F.; Layegh, P. The activity of ozonated olive oil against Leishmania major promastigotes. Iran. J. Basic Med. Sci. 2015, 18, 915. [Google Scholar]
- Caplan, J.A. Therapeutic ozone agent and treatment. 2018. Available online: http://www.freepatentsonline.com/y2016/0175353.html (accessed on 3 October 2018).
- Remondino, M.; Valdenassi, L.; Franzini, M. Pharmacoeconomic analysis of ozone therapy supported by agent based process simulation and data mining. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Remondino, M.; Franzini, M. Pharmacoeconomics as a Management and Financial Strategy in Healthcare and Simulation as a Decision Making Tool for it: The Case of Ozone Therapy. Int. J. Simul. Syst. Sci. Technol. 2018, 19, 28.1–28.10. [Google Scholar] [CrossRef]
- Carroll, A.B. The pyramid of corporate social responsibility: Toward the moral management of organizational stakeholders. Bus. Horiz. 1991, 34, 39–48. [Google Scholar] [CrossRef]
- Khan, M.; Majid, A.; Yasir, M.; Arshad, M. Corporate social responsibility and corporate reputation: A case of cement industry in Pakistan. Interdiscip. J. Contemp. Res. Bus. 2013, 5, 843–857. [Google Scholar]
2014 | 2017 | |
---|---|---|
Traditional pharmaceutical drugs (antibiotics, disinfectants, …) | €35,000 | €6000 |
Phytotherapies/homeopaths | €19,000 | €41,000 |
Branchispira and chloristride control acids | €66,000 | - |
Ten-year amortization of ozone plant | - | €9000 |
Electrical costs of ozone plant | - | €4000 |
Other maintenance costs | €2500 | |
Total | €120,000 | €62,500 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remondino, M.; Valdenassi, L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability 2018, 10, 4783. https://doi.org/10.3390/su10124783
Remondino M, Valdenassi L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability. 2018; 10(12):4783. https://doi.org/10.3390/su10124783
Chicago/Turabian StyleRemondino, Marco, and Luigi Valdenassi. 2018. "Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study" Sustainability 10, no. 12: 4783. https://doi.org/10.3390/su10124783
APA StyleRemondino, M., & Valdenassi, L. (2018). Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability, 10(12), 4783. https://doi.org/10.3390/su10124783