Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Data Sources
3. Results
3.1. Virtual Water Flows and Water Savings
3.2. Physical Water-Saving Efficiency
3.3. Economic Water-Saving Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bruce, L. Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency. Agric. Water Manag. 2012, 108, 27–38. [Google Scholar]
- Wallender, W.W.; Grimmer, M.E. Irrigation hydrology: Crossing scales. J. Irrig. Drain. Eng. 2002, 128, 203–211. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Pacenka, S.; Gao, W.; Ma, L.; Wang, G.; Steenhuis, T.S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J. Hydrol. 2015, 522, 428–438. [Google Scholar] [CrossRef]
- Singh, R.; Garg, K.K.; Wani, S.P.; Tewari, R.K.; Dhyani, S.K. Impact of water management interventions on hydrology and ecosystem services in GarhkundarDabar watershed of Bundelkhand region Central India. J. Hydrol. 2014, 509, 132–149. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, Y.; Wu, P.; Zhao, X. Water productivity evaluation for grain crops in irrigated regions of China. Ecol. Indic. 2015, 55, 107–117. [Google Scholar] [CrossRef]
- Cao, X.; Ren, J.; Wu, M.; Guo, X.; Wang, Z.; Wang, W. Effective use rate of generalized water resources assessment and to improve agricultural water use efficiency evaluation index system. Ecol. Indic. 2018, 86, 58–66. [Google Scholar] [CrossRef]
- Wokker, C.; Santos, P.; Bansok, R. Irrigation water productivity in Cambodian rice systems. Agric. Econ. 2014, 45, 421–430. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- D’Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2014, 2, 458–469. [Google Scholar] [CrossRef] [Green Version]
- Dalin, C.; Rodríguez-Iturbe, I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 2016, 11, 035012. [Google Scholar] [CrossRef] [Green Version]
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From food insufficiency towards trade dependency: A historical analysis of global food availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [PubMed]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- De Leo, F.; Miglietta, P.P. Water footprint and virtual water trade of olive oil. In Proceedings of the 18th IGWT Symposium of Technology and Innovation for a Sustainable Future: A Commodity Science Perspective, Roma, Italy, 24–28 September 2012; pp. 24–28. [Google Scholar]
- Miglietta, P.P.; Morrone, D. Managing Water Sustainability: Virtual Water Flows and Economic Water Productivity Assessment of the Wine Trade between Italy and the Balkans. Sustainability 2018, 10, 543. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities. Ecol. Econ. 2007, 64, 143–151. [Google Scholar] [CrossRef]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; De Leo, F.; Massari, S. Virtual water trade of agri-food products: Evidence from Italian-Chinese relations. Sci. Total Environ. 2017, 599, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Karandish, F.; Hoekstra, A.Y. Informing national food and water security policy through water footprint assessment: The case of Iran. Water 2017, 9, 831. [Google Scholar] [CrossRef]
- Liu, J.; Sun, S.; Wu, P.; Wang, Y.; Zhao, X. Inter-county virtual water flows of the Hetao irrigation district, China: A new perspective for water scarcity. J. Arid Environ. 2015, 119, 31–40. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.P.; Yang, H.; Liu, W.F.; Tillotson, M.R.; Guan, D.; Yi, Y.; Wang, H. Measuring scarce water saving from interregional virtual water flows in China. Environ. Res. Lett. 2018, 13, 054012. [Google Scholar] [CrossRef]
- Burdack, D.; Biewald, A.; Lotze-Campen, H. Cap-and-trade of water rights: A sustainable way out of Australia’s rural water problems? GAIA-Ecol. Perspect. Sci. Soc. 2014, 23, 318–326. [Google Scholar] [CrossRef]
- Wang, Y.B.; Liu, D.; Cao, X.C.; Yang, Z.Y.; Song, J.F.; Chen, D.Y.; Sun, S.K. Agricultural water rights trading and virtual water export compensation coupling model: A case study of an irrigation district in China. Agric. Water Manag. 2017, 180, 99–106. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products; Value of Water Research Report Series No. 47; UNESCO-IHE: Delft, The Netherlands, 2010. [Google Scholar]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wu, P.; Wang, Y.; Zhao, X.; Sun, S.; Cao, X. Impacts of changing cropping pattern on virtual water flows related to crops transfer: A case study for the Hetao irrigation district, China. J. Sci. Food Agric. 2014, 94, 2992–3000. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, X.; Li, B.; Yu, Z. Analysis of Blue and Green Water Consumption at the Irrigation District Scale. Sustainability 2018, 10, 305. [Google Scholar] [CrossRef]
- Bos, M.G. Irrigation efficiencies at the crop production level. ICID Bull. 1980, 29, 18–26. [Google Scholar]
- Yilmaz, B.; Yurdusev, M.A.; Harmancioglu, N.B. The assessment of irrigation efficiency in Buyuk Menderes Basin. Water Resour. Manag. 2009, 23, 1081–1095. [Google Scholar] [CrossRef]
- Cai, X.; Rosegrant, M.W.; Ringler, C. Physical and economic efficiency of water use in the river basin: Implications for efficient water management. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.G.; Liu, Q.Y.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Cai, Y. Calculation and analysis of water footprint in Beijing City. Chin. J. Eco-Agric. 2011, 19, 954–960. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. Statistical Yearbook of China; China Statistical Press: Beijing, China, 2016. [Google Scholar]
- Ministry of Agriculture of the People’s Republic of China. Agricultural Statistical Data of China; Chinese Agricultural Press: Beijing, China, 2015. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin; Water Resources and Electricity Press: Beijing, China, 2015. [Google Scholar]
- Zhang, Z.Y.; Yang, H.; Shi, M.J.; Zehnder, A.J.B.; Abbaspour, K.C. Analyses of impacts of China’s international trade on its water resources and uses. Hydrol. Earth Syst. Sci. 2011, 15, 2871–2880. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.R.; Liu, X.H.; Dong, Y.Y.; Wang, J.H. Analysis of China’s Water Security and Virtual Water Trade. Chin. J. Popul. Resour. Environ. 2006, 4, 18–23. [Google Scholar]
- Yang, H.; Pfister, S.; Bhaduri, A. Accounting for a scarce resource: Virtual water and water footprint in the global water system. Curr. Opin. Environ. Sustain. 2013, 5, 599–606. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed]
- Konar, M.; Caylor, K.K. Virtual water trade and development in Africa. Hydrol. Earth Syst. Sci. 2013, 17, 3969–3982. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Anadon, L.D. A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecol. Econ. 2014, 100, 159–172. [Google Scholar] [CrossRef]
- Zoumides, C.; Bruggeman, A.; Hadjikakou, M.; Zachariadis, T. Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecol. Indic. 2014, 43, 205–214. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yu, Z.; Cao, X.; Tian, L.; Sun, S.; Wu, P. A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecol. Indic. 2017, 72, 870–880. [Google Scholar] [CrossRef]
- Dalin, C.; Suweis, S.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I. Modeling past and future structure of the global virtual water trade network. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Suweis, S.; Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Structure and controls of the global virtual water trade network. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the virtual water trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Cai, W.; Du, P.; Pan, W.; Wang, C. Virtual water in interprovincial trade with implications for China’s water policy. J. Clean. Prod. 2015, 87, 655–665. [Google Scholar] [CrossRef]
- Rogers, P.; De Silva, R.; Bhatia, R. Water is an economic good: How to use prices to promote equity, efficiency, and sustainability. Water Policy 2002, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y.; Becht, R. Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya. Water Resour. Manag. 2012, 26, 3725–3742. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.-C.; Shin, H.-J.; Nguyen, T.T.; Tenhunen, J. Water Policy Reforms in South Korea: A Historical Review and Ongoing Challenges for Sustainable Water Governance and Management. Water 2017, 9, 717. [Google Scholar] [CrossRef]
- Konar, M.; Hussein, Z.; Hanasaki, N.; Mauzerall, D.L.; Rodriguez-Iturbe, I. Virtual water trade flows and savings under climate change. Hydrol. Earth Syst. Sci. 2013, 17, 3219–3234. [Google Scholar] [CrossRef]
- Konar, M.; Reimer, J.J.; Hussein, Z.; Hanasaki, N. The water footprint of staple crop trade under climate and policy scenarios. Environ. Res. Lett. 2016, 11, 035006. [Google Scholar] [CrossRef] [Green Version]
Provinces | Cereals (106 m3) | Beans (106 m3) | Tubers (106 m3) | Oil-Bearing Crops (106 m3) | Sugar Crops (106 m3) | Fruits (106 m3) | Vegetables (106 m3) | Virtual Water Exports Related to Crop Trade (106 m3) | Virtual Water Imports Related to Crop Trade (106 m3) |
---|---|---|---|---|---|---|---|---|---|
Anhui | 32.23 | 50.13 | 0.01 | 68.66 | −1.75 | 0.80 | 0.01 | 151.84 | −1.75 |
Beijing | −167.33 | −13.42 | −0.22 | −38.98 | −0.45 | −42.80 | −0.73 | 0.00 | −263.93 |
Chongqing | 5.97 | 18.16 | 0.07 | −22.36 | −1.95 | 1.65 | 0.01 | 25.87 | −24.31 |
Fujian | 0.39 | −6.14 | 0.01 | −29.99 | −0.23 | 0.20 | 0.00 | 0.59 | −36.36 |
Gansu | 9.75 | 13.62 | 0.04 | 0.34 | −0.64 | 0.87 | 0.03 | 24.65 | −0.64 |
Guangdong | −74.13 | −66.08 | 0.00 | −74.14 | 1.82 | 0.18 | 0.00 | 2.00 | −214.35 |
Guangxi | 7.31 | −19.99 | 0.00 | −5.94 | 4.35 | 0.26 | 0.00 | 11.92 | −25.93 |
Guizhou | 3.13 | 0.54 | 0.00 | 8.14 | 1.54 | 0.08 | 0.00 | 13.43 | 0.00 |
Hainan | 1.36 | −4.04 | 0.00 | −1.27 | 0.34 | 0.04 | 0.00 | 1.74 | −5.31 |
Hebei | 43.49 | −33.92 | 0.10 | −5.27 | 0.08 | 6.64 | 0.12 | 50.44 | −39.20 |
Heilongjiang | 74.03 | 85.11 | 0.05 | −74.04 | −1.35 | 0.20 | 0.00 | 159.39 | −75.39 |
Henan | 53.46 | −20.24 | 0.03 | 128.33 | −2.18 | 4.96 | 0.03 | 186.81 | −22.42 |
Hubei | 25.57 | −16.36 | 0.01 | 77.23 | −0.37 | 0.01 | 0.00 | 102.82 | −16.72 |
Hunan | 13.01 | −30.11 | 0.01 | 58.92 | −1.11 | 0.14 | 0.01 | 72.09 | −31.22 |
Inner Mongolia | 29.68 | 85.63 | 0.10 | 142.71 | 0.79 | 3.78 | 0.06 | 262.75 | 0.00 |
Jiangsu | 49.19 | 13.54 | 0.02 | −58.59 | −1.97 | 0.69 | 0.02 | 63.45 | −60.56 |
Jiangxi | 7.84 | −8.58 | 0.02 | −1.39 | 0.18 | 0.54 | 0.00 | 8.59 | −9.97 |
Jilin | 23.38 | 18.23 | 0.04 | 17.42 | −0.74 | 0.39 | 0.00 | 59.46 | −0.74 |
Liaoning | 19.39 | −9.14 | 0.02 | −48.11 | −1.31 | 0.93 | 0.01 | 20.36 | −58.56 |
Ningxia | 7.11 | −2.10 | 0.02 | 1.30 | −0.21 | 3.11 | 0.02 | 11.55 | −2.31 |
Qinghai | −6.37 | 3.22 | 0.02 | 9.53 | −0.20 | −10.05 | 0.00 | 12.78 | −16.63 |
Shaanxi | 5.16 | −9.99 | 0.01 | −21.65 | −0.88 | 0.50 | 0.00 | 5.67 | −32.52 |
Shandong | 56.57 | −42.47 | 0.10 | 54.28 | −2.28 | 7.03 | 0.06 | 118.03 | −44.75 |
Shanghai | −298.88 | −16.99 | −0.31 | −38.04 | −0.85 | −45.09 | 0.00 | 0.00 | −400.16 |
Shanxi | 6.24 | 2.08 | 0.01 | −37.46 | −0.68 | 1.56 | 0.01 | 9.90 | −38.14 |
Sichuan | 19.57 | 6.77 | 0.00 | 4.33 | −2.13 | 0.04 | 0.00 | 30.71 | −2.13 |
Tianjin | −5.33 | −12.79 | −0.23 | −28.59 | −0.52 | −35.19 | 0.00 | 0.00 | −82.64 |
Tibet | 0.07 | −4.01 | −0.07 | −0.61 | −0.27 | −0.27 | 0.00 | 0.07 | −5.22 |
Xinjiang | 50.08 | −5.12 | 0.09 | −7.24 | 1.66 | 97.73 | 0.33 | 149.88 | −12.36 |
Yunnan | 8.06 | 32.15 | 0.01 | 0.13 | 11.35 | 1.04 | 0.00 | 52.74 | 0.00 |
Zhejiang | 0.04 | −7.69 | 0.01 | −77.65 | −0.07 | 0.04 | 0.00 | 0.10 | −85.42 |
National virtual water exports | 552.05 | 329.19 | 0.83 | 571.30 | 22.12 | 133.40 | 0.73 | 1609.62 | |
National virtual water imports | −552.05 | −329.19 | −0.83 | −571.30 | −22.12 | −133.40 | −0.73 | −1609.62 |
Crops | Water Savings (106 m3) | Physical Water-Saving Efficiency (m3/ m3) | Economic Water-Saving Efficiency (103 Yuan/m3) |
---|---|---|---|
Cereals | −43.58 | −0.08 | 0.92 |
Beans | 553.76 | 1.68 | 6.93 |
Tubers | 7.83 | 9.48 | 44.78 |
Oil-bearing crops | 691.86 | 1.21 | 3.75 |
Sugar crops | 146.25 | 6.61 | 13.42 |
Fruits | 14.11 | 0.11 | 3.50 |
Vegetables | −0.10 | −0.13 | 2.11 |
All kinds of crops | 1370.13 | 0.85 | 3.56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Y.; Yu, Z. Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China. Sustainability 2018, 10, 4308. https://doi.org/10.3390/su10114308
Liu J, Zhang Y, Yu Z. Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China. Sustainability. 2018; 10(11):4308. https://doi.org/10.3390/su10114308
Chicago/Turabian StyleLiu, Jing, Yu Zhang, and Zhongbo Yu. 2018. "Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China" Sustainability 10, no. 11: 4308. https://doi.org/10.3390/su10114308
APA StyleLiu, J., Zhang, Y., & Yu, Z. (2018). Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China. Sustainability, 10(11), 4308. https://doi.org/10.3390/su10114308