Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park
Abstract
1. Introduction
2. History of Water Defluoridation in the East African Rift Valley
3. History of Rainwater Harvesting in the EARV
4. Concept of Water Blending
5. Making the Kilimanjaro a RWH Park
6. Conditions for the Success of the RWH-Against-Fluorosis-Concept
6.1. Regions of Relevance
6.2. Analytical Aspects
6.3. RWH and Malaria
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, W.F. The mobility of soluble fluoride in soils. Environ. Pollut. B 1985, 9, 281–308. [Google Scholar] [CrossRef]
- Carstairs, C. Debating water fluoridation before Dr. Strangelove. Am. J. Public Health 2015, 105, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Kanyora, A.; Kinyanjui, T.; Kariuki, S.; Njogu, M. Fluoride removal capacity of regenerated bone char in treatment of drinking water. Asian J. Nat. Appl. Sci. 2015, 4, 30–36. [Google Scholar]
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fawtrell, L.; Magara, Y. Fluoride in Drinking Water; World Health Organization (WHO): Geneva, Switzerland, 2006; pp. 138–167. [Google Scholar]
- Yadav, N.; Rani, K.; Yadav, S.S.; Yadav, D.K.; Yadav, V.K.; Yadav, N. Soil and Water Pollution with Fluoride, Geochemistry, Food Safety Issues and Reclamation—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1147–1162. [Google Scholar] [CrossRef]
- WHO. Fluoride in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Ndé-Tchoupé, A.I.; Crane, R.A.; Mwakabona, H.T.; Noubactep, C.; Njau, K.N. Technologies for decentralized fluoride removal: Testing metallic iron-based filters. Water 2015, 7, 6750–6774. [Google Scholar] [CrossRef]
- Naseri, E.; Ndé-Tchoupé, A.I.; Mwakabona, H.T.; Nanseu-Njiki, C.P.; Noubactep, C.; Njau, K.N.; Wydra, K.D. Making Fe0-based filters a universal solution for safe drinking water provision. Sustainability 2017, 9, 1224. [Google Scholar] [CrossRef]
- Maier, F.J. Methods of removing fluorides from water. Am. J. Public Health 1947, 37, 1559–1566. [Google Scholar] [CrossRef]
- Mjengera, H.; Mkongo, G. Appropriate defluoridation technology for use in flourotic areas in Tanzania. Phys. Chem. Earth Parts A/B/C 2003, 28, 1097–1104. [Google Scholar] [CrossRef]
- Dahi, E. Africa’s U-Turn in defluoridation policy: From the Nalgonda technique to bone char. Res. Rep. Fluoride 2016, 49 Pt 1, 401–416. [Google Scholar]
- Wagutu, A.W.; Machunda, R.; Jande, Y.A.C. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in East African rift valley. J. Hazard. Mater. 2018, 347, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Zevenbergen, C.; Van Reeuwijk, L.P.; Frapporti, G.; Louws, R.J.; Schuiling, R.D. A simple method for defluoridation of drinking water at village level by adsorption on Ando soil in Kenya. Sci. Total Environ. 1996, 188, 225–232. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption: A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Heimann, S. Testing granular iron for fluoride for aqueous fluoride removal. Freiberg Online Geosci. 2018, 52, 80. [Google Scholar]
- Heimann, S.; Ndé-Tchoupé, A.I.; Hu, R.; Licha, T.; Noubactep, C. Investigating the suitability of Fe0 packed-beds for water defluoridation. Chemosphere 2018, 209, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Weber-Shirk, M.L.; Dick, R.I. Bacterivory by a chrysophyte in slow sand filters. Water Res. 1999, 33, 631–638. [Google Scholar] [CrossRef]
- Campos, L. Modelling and Simulation of the Biological and Physical Processes of Slow Sand Filtration. Ph.D. Thesis, Imperial College, London, UK, 2002. [Google Scholar]
- Gottinger, A.M.; McMartin, D.W.; Price, D.; Hanson, B. The effectiveness of slow sand filters to treat Canadian rural prairie water. Can. J. Civ. Eng. 2011, 38, 455–463. [Google Scholar] [CrossRef]
- Haig, S.J.; Collins, G.; Davies, R.L.; Dorea, C.C.; Quince, C. Biological aspects of slow sand filtration: Past, present and future. Water Sci. Technol. Water Supply 2011, 11, 468–472. [Google Scholar] [CrossRef]
- Elliott, M.A.; Stauber, C.E.; Koksal, F.; DiGiano, F.A.; Sobsey, M.D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008, 42, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Kubare, M.; Haarhoff, J. Rational design of domestic biosand filters. J. Water Supply Res. Technol. AQUA 2010, 59, 1–15. [Google Scholar] [CrossRef]
- Rooklidge, S.J.; Ketchum, L.H., Jr. Corrosion control enhancement from a dolomite-amended slow sand filter. Water Res. 2002, 36, 2689–2694. [Google Scholar] [CrossRef]
- Ali Baig, S.; Mahmood, Q.; Nawab, B.; Shafqat, M.N.; Pervez, A. Improvement of drinking water quality by using plant biomass through household biosand filter—A decentralized approach. Ecol. Eng. 2011, 37, 1842–1848. [Google Scholar] [CrossRef]
- Bradley, I.; Straub, A.; Maraccini, P.; Markazi, S.; Nguyen, T.H. Iron oxide amended biosand filters for virus removal. Water Res. 2011, 45, 4501–4510. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Temgoua, E.; Rahman, M.A. Designing iron-amended biosand filters for decentralized safe drinking water provision. CLEAN Soil Air Water 2012, 40, 798–807. [Google Scholar] [CrossRef]
- MacQuillan, C.J. Chronic fluoride poisoning in the Arasha District, Tanganyika Territory. East Afr. Med. J. 1944, 21, 131–134. [Google Scholar]
- Koritnig, S. Ein beitrag zur Geochemie des Fluor (Mit besonderer Berücksichtigung der Sedimente). Geochim. Cosmochim. Acta 1951, 1, 89–116. [Google Scholar] [CrossRef]
- Ockerse, T. Chronic endemic dental fluorosis in Kenya. East Afr. Br. Dent. J. 1953, 95, 57–60. [Google Scholar]
- Grech, P.; Latham, M.C. Fluorosis in Northern regions of Tanganyika. Trans. R. Soc. Trop. Med. 1964, 58, 566–573. [Google Scholar] [CrossRef]
- Grech, P. Fluorosis in young persons. A further survey in northern Tanganyika, Tanzania. J. Radiol. 1966, 39, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Gerasimovskiy, V.I.; Savinova, Y.N. Fluorine contents of volcanic rocks in the rift zone of East Africa. Geochim. Int. 1969, 6, 1124–1128. [Google Scholar]
- Kilham, P. Biogeochemistry of African Lakes and Rivers. Ph.D. Thesis, Duke University, Durham, NC, USA, 1971; p. 199. [Google Scholar]
- Kilham, P. Mechanisms controlling the chemical composition of lakes and rivers: Data from Africa. Limnol. Oceanogr. 1990, 35, 80–83. [Google Scholar] [CrossRef]
- Nanyaro, J.T.; Aswathanarayana, U.; Mungure, J.S.; Lahermo, P.W. A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. J. Afr. Earth Sci. 1984, 2, 129–140. [Google Scholar] [CrossRef]
- Walker, G.W.; Milne, A.H. Fluorosis in cattle in the northern province of Tanganyika. East Afr. Agric. J. 1955, 21, 2–5. [Google Scholar] [CrossRef]
- Boruff, C.S. Removal of fluoride from drinking waters. Ind. Eng. Chem. 1936, 26, 69–71. [Google Scholar] [CrossRef]
- TZS 789 Drinking (Potable) Water—Specification; Tanzania Bureau of Standards: Dar es Salaam, Tanzania, 2008.
- TZS 789 Potable Water Specification, 3rd ed.; EAS 12: 2014, ICS: 67.060.29; Tanzania Bureau of Standards: Dar es Salaam, Tanzania, 2016.
- Luo, F.; Inoue, K. The removal of fluoride ion by using metal (III)-loaded Amberlite resins. Solvent Extr. Ion Exch. 2004, 22, 305–322. [Google Scholar] [CrossRef]
- Yang, C.L.; Dluhy, R. Electrochemical generation of aluminum sorbent for fluoride adsorption. J. Hazard. Mater. 2002, 94, 239–252. [Google Scholar] [CrossRef]
- Ghorai, S.; Pant, K.K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 2005, 42, 265–271. [Google Scholar] [CrossRef]
- Shen, J. Application of Membrane Technologies in Water Purification. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2016. [Google Scholar]
- Shen, J.; Mkongo, G.; Abbt-Braun, G.; Ceppi, S.L.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. Sep. Purif. Technol. 2015, 149, 349–361. [Google Scholar] [CrossRef]
- Lee, M.D.; Visscher, J.T. Water Harvesting in Five African Countries; Occasional Paper Series 14; IRC: Den Haag, The Netherlands, 1990. [Google Scholar]
- Prinz, D. Water Harvesting: Past and Future. In Sustainability of Irrigated Agriculture, Proceedings of the NATO Advanced Research Workshop, Vimeiro, Portugal, 21–26 March 1994; Pereira, L.S., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 135–144. [Google Scholar]
- Mlasu, M.; Khaka, E.; Mati, B.; Oduor, A.; De Bock, T.; Nyabenge, M.; Oduor, V. Mapping the Potentials for Rainwater Harvesting Technologies in Africa: A GIS Overview of Development Domains for the Continent and Nine Selected Countries; Technical Manual 7; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2006. [Google Scholar]
- Worm, J.; van Hattum, T. Rainwater Harvesting for Domestic Use; Agromisa Foundation and CTA: Wageningen, The Netherlands, 2006; ISBN 90-8573-053-8. [Google Scholar]
- Pachpute, J.S.; Tumbo, S.D.; Sally, H.; Mul, M.L. Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resour. Manag. 2009, 23, 2815–2839. [Google Scholar] [CrossRef]
- Parker, A.; Cruddas, P.; Rowe, N.; Carter, R.; Webster, J. Tank costs for domestic rainwater harvesting in East Africa. In Proceedings of the Institution of Civil Engineers, Water Management; ICE Publishing: London, UK, 2012; Volume 166, pp. 536–545. [Google Scholar]
- Beckers, B.; Berking, J.; Schütt, B. Ancient water harvesting methods in the drylands of the Mediterranean and Western Asia. J. Ancient Stud. 2013, 2, 145–164. [Google Scholar]
- Cheo, A.E. Understanding seasonal trend of rainfall for the better planning of water harvesting facilities in the Far-North region, Cameroon. Water Util. J. 2016, 13, 3–11. [Google Scholar]
- Tapsuwan, S.; Cook, S.; Moglia, M. Willingness to pay for rainwater tank features: A post-drought analysis of Sydney water users. Water 2018, 10, 1199. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Taya, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater–comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Venhuizen, D.; Ford, K.; Miller, M.; Bray, S.; Payne, S.; Sansom, A. Rainwater Harvesting as a Development-Wide Water Supply Strategy; Texas Water Development Board: Austin, TX, USA, 2013; pp. 45–62. [Google Scholar]
- Taffere, G.R.; Beyene, A.; Vuai, S.A.; Gasana, J.; Seleshi, Y. Reliability analysis of roof rainwater harvesting systems in a semi-arid region of sub-Saharan Africa: Case study of Mekelle, Ethiopia. Hydrol. Sci. J. 2016, 61, 1135–1140. [Google Scholar] [CrossRef]
- Ojwang, R.O.; Dietrich, J.; Anebagilu, P.K.; Beyer, M.; Rottensteiner, F. Rooftop rainwater harvesting for Mombasa: Scenario development with image classification and water resources simulation. Water 2017, 9, 359. [Google Scholar] [CrossRef]
- Krapf, J.L. Travels, Researches and Missionary Labours during an Eighteen Years’ Residence in Eastern Africa; Reprint; Frank Cass: London, UK, 1968. [Google Scholar]
- Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Senkondo, E.M.; Hatibu, N. Indigenous knowledge as decision support tool in rainwater harvesting. Phys. Chem. Earth Parts A/B/C 2005, 30, 792–798. [Google Scholar] [CrossRef]
- Mati, B.M.; Malesu, M.; Oduor, A. Promoting Rainwater Harvesting Eastern and Southern Africa: The RELMA Experience; Working Paper 24; World Agroforestry Centre: Nairobi, Kenya, 2005. [Google Scholar]
- Stroosnijder, L.; Hoogmoed, W.B. Crust formation on sandy soils in the Sahel II: Tillage and its effects on the water balance. Soil Till. Res. 1984, 4, 321–337. [Google Scholar] [CrossRef]
- Rockström, J. Water resources management in smallholder farms in Eastern and Southern Africa: An overview. Phys. Chem. Earth B 2000, 25, 275–283. [Google Scholar] [CrossRef]
- Rockstrom, J.; Barron, J.; Fox, P. Rainwater management for increased productivity among smallholder farmers in drought prone environments. Phys. Chem. Earth 2002, 27, 949–959. [Google Scholar] [CrossRef]
- Rockstrom, J. Water for food and nature in drought-prone tropics: Vapor Shift in rainfed agriculture. Philos. Trans. Biol. Sci. 2003, 358, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Rockstrom, J.; Folke, C.; Gordon, L.; Hatibu, N.; Jewitt, G.; de Vries, P.F.; Rwehumbisa, F.; Sally, H.; Savenije, H.; Schulze, R. A watershed approach to upgrade rainfed agriculture in water scarce regions through Water System Innovations: An integrated research initiative on water for food and rural livelihoods in balance with ecosystem functions. Phys. Chem. Earth 2004, 29, 1109–1118. [Google Scholar] [CrossRef]
- Stroosnijder, L. Rainfall and land degradation. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: New York, NY, USA, 2007; pp. 167–195. [Google Scholar]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Maweny, L.; Barron, J.; Mutu, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Till. Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Stroosnijder, L. Modifying land management in order to improve efficiency of rainwater use in the African highlands. Soil Till. Res. 2009, 103, 247–256. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Howe, K.J.; Crittenden, J.C.; Hand, D.W.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; 674p. [Google Scholar]
- Leffmann, H. Direct and indirect methods of electrical purification of water. J. Frankl. Inst. 1907, 164, 205–216. [Google Scholar] [CrossRef]
- Rangarajan, R.; Ghosh, P. Rainwater Management and Harvesting Strategies for Human Needs: An Indian Perspective. Environ. Sci. Technol. 2011, 45, 9469–9494. [Google Scholar] [CrossRef] [PubMed]
- Mwamila, T.B.; Han, M.Y.; Katambara, Z. Strategy to Overcome Barriers of Rainwater Harvesting, Case Study Tanzania. J. Geosci. Environ. Protect. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Ndé-Tchoupé, A.I.; Nanseu-Njiki, C.P.; Hu, R.; Nassi, A.; Noubactep, C.; Licha, T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. Chemosphere 2018. in Press. [Google Scholar]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply. Rev. Perspect. Sust. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M. Progress in understanding the mechanism of CrVI Removal in Fe0-based filtration systems. Water 2018, 10, 651. [Google Scholar] [CrossRef]
- Lilje, J.; Mosler, H.-J. Continuation of health behaviors: Psychosocial factors sustaining drinking water chlorination in a longitudinal study from Chad. Sustainability 2016, 8, 1149. [Google Scholar] [CrossRef]
- Btatkeu-K, B.D.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Manag. 2016, 166, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Moglia, M.; Cook, S.; Tapsuwan, S. Promoting water conservation: Where to from here? Water 2018, 10, 1510. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Mitiku, H. The potential of in situ rain water harvesting for water resources conservation on malaria transmission in Tigray, Northern Ethiopia. Momona Ethiop. J. Sci. MEJS 2010, 2, 49–63. [Google Scholar]
- Kibret, S.; Wilson, G.G.; Tekie, H.; Petros, B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar. J. 2014, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Mutero, C.M.; Blank, H.; Konradsen, F.; van der Hoek, W. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop. 2000, 3, 253–263. [Google Scholar] [CrossRef]
- Utzinger, J.; Tozan, Y.; Singer, B.H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop. Med. Int. Health 2001, 9, 677–687. [Google Scholar] [CrossRef]
- Keiser, J.; Caldas de Castro, M.; Maltese, M.F.; Bos, R.; Tanner, M.; Singer, B.H.; Utzinger, J. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am. J. Trop. Med. Hyg. 2005, 72, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Lynch, M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: Review of achievements and potential. Med. Vet. Entomol. 2007, 21, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Mwangangi, M.J.; Shililu, J.; Muturi, E.J.; Muriu, S.; Jacob, B.; Kabiru, E.W.; Mbogo, C.M.; Githure, J.; Novak, R.J. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar. J. 2010, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Moglia, M.; Gan, K.; Delbridge, N.; Tjandraatmadja, G.; Gulizia, E.; Pollard, C.; Sharma, A.; Cook, S. Condition inspection of rainwater tanks in Melbourne. In Proceedings of the 36th Hydrology and Water Resources Symposium: The Art and Science of Water, Hobart, Australia, 7–10 December 2015; Engineers Australia: Barton, Australia, 2015; pp. 1413–1417. [Google Scholar]
- Moglia, M.; Gan, K.; Delbridge, N. Exploring methods to minimize the risk of mosquitoes in rainwater harvesting systems. J. Hydrol. 2016, 543, 324–329. [Google Scholar] [CrossRef]
- Moglia, M.; Gan, K.; Delbridge, N.; Sharma, A.K.; Tjandraatmadja, G. Investigation of pump and pump switch failures in rainwater harvesting systems. J. Hydrol. 2016, 538, 208–215. [Google Scholar] [CrossRef]
- Bashar, M.Z.I.; Karim, M.R.; Imteaz, M.A. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resour. Conserv. Recycl. 2018, 133, 146–154. [Google Scholar] [CrossRef]
For 10 L | For 1000 L | ||||
---|---|---|---|---|---|
R | C2 | V1 | V2 | V1 | V2 |
(-) | (mg/L) | (L) | (L) | (L) | (L) |
1.0 | 1.5 | 0.0 | 10.0 | 0 | 1000 |
1.1 | 1.7 | 1.0 | 9.0 | 100 | 900 |
1.3 | 1.9 | 2.0 | 8.0 | 200 | 800 |
1.4 | 2.1 | 3.0 | 7.0 | 300 | 700 |
1.7 | 2.5 | 4.0 | 6.0 | 400 | 600 |
2.0 | 3.0 | 5.0 | 5.0 | 500 | 500 |
2.5 | 3.8 | 6.0 | 4.0 | 600 | 400 |
3.3 | 5.0 | 7.0 | 3.0 | 700 | 300 |
5.0 | 7.5 | 8.0 | 2.0 | 800 | 200 |
10.0 | 15.0 | 9.0 | 1.0 | 900 | 100 |
Treatment Technology | Type of Contamination | Position in Chain |
---|---|---|
Gutter screening (e.g., grids) | Leaves and larger particles | Entrance before storage |
Coarse sand filtration | Particles and agglomerates | Entrance before storage |
Fine sand filtration | Agglomerates and colloids | Entrance after storage |
Slow sand filters (SSF) | Micro-organisms | After storage |
Blending | Lower fluoride concentration | After SSF treatment |
Adding desirable trace minerals | ||
Fe0-amended SSF | Chemicals and micro-organisms | After blending |
Mineralisation | Adding desirable trace minerals | After Fe0 filtration |
Pasteurization | Disinfection | At the end of the chain |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marwa, J.; Lufingo, M.; Noubactep, C.; Machunda, R. Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability 2018, 10, 4194. https://doi.org/10.3390/su10114194
Marwa J, Lufingo M, Noubactep C, Machunda R. Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability. 2018; 10(11):4194. https://doi.org/10.3390/su10114194
Chicago/Turabian StyleMarwa, Janeth, Mesia Lufingo, Chicgoua Noubactep, and Revocatus Machunda. 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park" Sustainability 10, no. 11: 4194. https://doi.org/10.3390/su10114194
APA StyleMarwa, J., Lufingo, M., Noubactep, C., & Machunda, R. (2018). Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability, 10(11), 4194. https://doi.org/10.3390/su10114194