Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park
Abstract
:1. Introduction
2. History of Water Defluoridation in the East African Rift Valley
3. History of Rainwater Harvesting in the EARV
4. Concept of Water Blending
5. Making the Kilimanjaro a RWH Park
6. Conditions for the Success of the RWH-Against-Fluorosis-Concept
6.1. Regions of Relevance
6.2. Analytical Aspects
6.3. RWH and Malaria
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, W.F. The mobility of soluble fluoride in soils. Environ. Pollut. B 1985, 9, 281–308. [Google Scholar] [CrossRef]
- Carstairs, C. Debating water fluoridation before Dr. Strangelove. Am. J. Public Health 2015, 105, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Kanyora, A.; Kinyanjui, T.; Kariuki, S.; Njogu, M. Fluoride removal capacity of regenerated bone char in treatment of drinking water. Asian J. Nat. Appl. Sci. 2015, 4, 30–36. [Google Scholar]
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fawtrell, L.; Magara, Y. Fluoride in Drinking Water; World Health Organization (WHO): Geneva, Switzerland, 2006; pp. 138–167. [Google Scholar]
- Yadav, N.; Rani, K.; Yadav, S.S.; Yadav, D.K.; Yadav, V.K.; Yadav, N. Soil and Water Pollution with Fluoride, Geochemistry, Food Safety Issues and Reclamation—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1147–1162. [Google Scholar] [CrossRef]
- WHO. Fluoride in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Ndé-Tchoupé, A.I.; Crane, R.A.; Mwakabona, H.T.; Noubactep, C.; Njau, K.N. Technologies for decentralized fluoride removal: Testing metallic iron-based filters. Water 2015, 7, 6750–6774. [Google Scholar] [CrossRef]
- Naseri, E.; Ndé-Tchoupé, A.I.; Mwakabona, H.T.; Nanseu-Njiki, C.P.; Noubactep, C.; Njau, K.N.; Wydra, K.D. Making Fe0-based filters a universal solution for safe drinking water provision. Sustainability 2017, 9, 1224. [Google Scholar] [CrossRef]
- Maier, F.J. Methods of removing fluorides from water. Am. J. Public Health 1947, 37, 1559–1566. [Google Scholar] [CrossRef]
- Mjengera, H.; Mkongo, G. Appropriate defluoridation technology for use in flourotic areas in Tanzania. Phys. Chem. Earth Parts A/B/C 2003, 28, 1097–1104. [Google Scholar] [CrossRef]
- Dahi, E. Africa’s U-Turn in defluoridation policy: From the Nalgonda technique to bone char. Res. Rep. Fluoride 2016, 49 Pt 1, 401–416. [Google Scholar]
- Wagutu, A.W.; Machunda, R.; Jande, Y.A.C. Crustacean derived calcium phosphate systems: Application in defluoridation of drinking water in East African rift valley. J. Hazard. Mater. 2018, 347, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Zevenbergen, C.; Van Reeuwijk, L.P.; Frapporti, G.; Louws, R.J.; Schuiling, R.D. A simple method for defluoridation of drinking water at village level by adsorption on Ando soil in Kenya. Sci. Total Environ. 1996, 188, 225–232. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption: A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Heimann, S. Testing granular iron for fluoride for aqueous fluoride removal. Freiberg Online Geosci. 2018, 52, 80. [Google Scholar]
- Heimann, S.; Ndé-Tchoupé, A.I.; Hu, R.; Licha, T.; Noubactep, C. Investigating the suitability of Fe0 packed-beds for water defluoridation. Chemosphere 2018, 209, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Weber-Shirk, M.L.; Dick, R.I. Bacterivory by a chrysophyte in slow sand filters. Water Res. 1999, 33, 631–638. [Google Scholar] [CrossRef]
- Campos, L. Modelling and Simulation of the Biological and Physical Processes of Slow Sand Filtration. Ph.D. Thesis, Imperial College, London, UK, 2002. [Google Scholar]
- Gottinger, A.M.; McMartin, D.W.; Price, D.; Hanson, B. The effectiveness of slow sand filters to treat Canadian rural prairie water. Can. J. Civ. Eng. 2011, 38, 455–463. [Google Scholar] [CrossRef]
- Haig, S.J.; Collins, G.; Davies, R.L.; Dorea, C.C.; Quince, C. Biological aspects of slow sand filtration: Past, present and future. Water Sci. Technol. Water Supply 2011, 11, 468–472. [Google Scholar] [CrossRef]
- Elliott, M.A.; Stauber, C.E.; Koksal, F.; DiGiano, F.A.; Sobsey, M.D. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008, 42, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
- Kubare, M.; Haarhoff, J. Rational design of domestic biosand filters. J. Water Supply Res. Technol. AQUA 2010, 59, 1–15. [Google Scholar] [CrossRef]
- Rooklidge, S.J.; Ketchum, L.H., Jr. Corrosion control enhancement from a dolomite-amended slow sand filter. Water Res. 2002, 36, 2689–2694. [Google Scholar] [CrossRef]
- Ali Baig, S.; Mahmood, Q.; Nawab, B.; Shafqat, M.N.; Pervez, A. Improvement of drinking water quality by using plant biomass through household biosand filter—A decentralized approach. Ecol. Eng. 2011, 37, 1842–1848. [Google Scholar] [CrossRef]
- Bradley, I.; Straub, A.; Maraccini, P.; Markazi, S.; Nguyen, T.H. Iron oxide amended biosand filters for virus removal. Water Res. 2011, 45, 4501–4510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noubactep, C.; Temgoua, E.; Rahman, M.A. Designing iron-amended biosand filters for decentralized safe drinking water provision. CLEAN Soil Air Water 2012, 40, 798–807. [Google Scholar] [CrossRef]
- MacQuillan, C.J. Chronic fluoride poisoning in the Arasha District, Tanganyika Territory. East Afr. Med. J. 1944, 21, 131–134. [Google Scholar]
- Koritnig, S. Ein beitrag zur Geochemie des Fluor (Mit besonderer Berücksichtigung der Sedimente). Geochim. Cosmochim. Acta 1951, 1, 89–116. [Google Scholar] [CrossRef]
- Ockerse, T. Chronic endemic dental fluorosis in Kenya. East Afr. Br. Dent. J. 1953, 95, 57–60. [Google Scholar]
- Grech, P.; Latham, M.C. Fluorosis in Northern regions of Tanganyika. Trans. R. Soc. Trop. Med. 1964, 58, 566–573. [Google Scholar] [CrossRef]
- Grech, P. Fluorosis in young persons. A further survey in northern Tanganyika, Tanzania. J. Radiol. 1966, 39, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Gerasimovskiy, V.I.; Savinova, Y.N. Fluorine contents of volcanic rocks in the rift zone of East Africa. Geochim. Int. 1969, 6, 1124–1128. [Google Scholar]
- Kilham, P. Biogeochemistry of African Lakes and Rivers. Ph.D. Thesis, Duke University, Durham, NC, USA, 1971; p. 199. [Google Scholar]
- Kilham, P. Mechanisms controlling the chemical composition of lakes and rivers: Data from Africa. Limnol. Oceanogr. 1990, 35, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Nanyaro, J.T.; Aswathanarayana, U.; Mungure, J.S.; Lahermo, P.W. A geochemical model for the abnormal fluoride concentrations in waters in parts of northern Tanzania. J. Afr. Earth Sci. 1984, 2, 129–140. [Google Scholar] [CrossRef]
- Walker, G.W.; Milne, A.H. Fluorosis in cattle in the northern province of Tanganyika. East Afr. Agric. J. 1955, 21, 2–5. [Google Scholar] [CrossRef]
- Boruff, C.S. Removal of fluoride from drinking waters. Ind. Eng. Chem. 1936, 26, 69–71. [Google Scholar] [CrossRef]
- TZS 789 Drinking (Potable) Water—Specification; Tanzania Bureau of Standards: Dar es Salaam, Tanzania, 2008.
- TZS 789 Potable Water Specification, 3rd ed.; EAS 12: 2014, ICS: 67.060.29; Tanzania Bureau of Standards: Dar es Salaam, Tanzania, 2016.
- Luo, F.; Inoue, K. The removal of fluoride ion by using metal (III)-loaded Amberlite resins. Solvent Extr. Ion Exch. 2004, 22, 305–322. [Google Scholar] [CrossRef]
- Yang, C.L.; Dluhy, R. Electrochemical generation of aluminum sorbent for fluoride adsorption. J. Hazard. Mater. 2002, 94, 239–252. [Google Scholar] [CrossRef]
- Ghorai, S.; Pant, K.K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 2005, 42, 265–271. [Google Scholar] [CrossRef]
- Shen, J. Application of Membrane Technologies in Water Purification. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2016. [Google Scholar]
- Shen, J.; Mkongo, G.; Abbt-Braun, G.; Ceppi, S.L.; Richards, B.S.; Schäfer, A.I. Renewable energy powered membrane technology: Fluoride removal in a rural community in northern Tanzania. Sep. Purif. Technol. 2015, 149, 349–361. [Google Scholar] [CrossRef]
- Lee, M.D.; Visscher, J.T. Water Harvesting in Five African Countries; Occasional Paper Series 14; IRC: Den Haag, The Netherlands, 1990. [Google Scholar]
- Prinz, D. Water Harvesting: Past and Future. In Sustainability of Irrigated Agriculture, Proceedings of the NATO Advanced Research Workshop, Vimeiro, Portugal, 21–26 March 1994; Pereira, L.S., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 135–144. [Google Scholar]
- Mlasu, M.; Khaka, E.; Mati, B.; Oduor, A.; De Bock, T.; Nyabenge, M.; Oduor, V. Mapping the Potentials for Rainwater Harvesting Technologies in Africa: A GIS Overview of Development Domains for the Continent and Nine Selected Countries; Technical Manual 7; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2006. [Google Scholar]
- Worm, J.; van Hattum, T. Rainwater Harvesting for Domestic Use; Agromisa Foundation and CTA: Wageningen, The Netherlands, 2006; ISBN 90-8573-053-8. [Google Scholar]
- Pachpute, J.S.; Tumbo, S.D.; Sally, H.; Mul, M.L. Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resour. Manag. 2009, 23, 2815–2839. [Google Scholar] [CrossRef]
- Parker, A.; Cruddas, P.; Rowe, N.; Carter, R.; Webster, J. Tank costs for domestic rainwater harvesting in East Africa. In Proceedings of the Institution of Civil Engineers, Water Management; ICE Publishing: London, UK, 2012; Volume 166, pp. 536–545. [Google Scholar]
- Beckers, B.; Berking, J.; Schütt, B. Ancient water harvesting methods in the drylands of the Mediterranean and Western Asia. J. Ancient Stud. 2013, 2, 145–164. [Google Scholar]
- Cheo, A.E. Understanding seasonal trend of rainfall for the better planning of water harvesting facilities in the Far-North region, Cameroon. Water Util. J. 2016, 13, 3–11. [Google Scholar]
- Tapsuwan, S.; Cook, S.; Moglia, M. Willingness to pay for rainwater tank features: A post-drought analysis of Sydney water users. Water 2018, 10, 1199. [Google Scholar] [CrossRef]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Taya, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Bak, G.; Han, M. Quality of roof-harvested rainwater–comparison of different roofing materials. Environ. Pollut. 2012, 162, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Venhuizen, D.; Ford, K.; Miller, M.; Bray, S.; Payne, S.; Sansom, A. Rainwater Harvesting as a Development-Wide Water Supply Strategy; Texas Water Development Board: Austin, TX, USA, 2013; pp. 45–62. [Google Scholar]
- Taffere, G.R.; Beyene, A.; Vuai, S.A.; Gasana, J.; Seleshi, Y. Reliability analysis of roof rainwater harvesting systems in a semi-arid region of sub-Saharan Africa: Case study of Mekelle, Ethiopia. Hydrol. Sci. J. 2016, 61, 1135–1140. [Google Scholar] [CrossRef]
- Ojwang, R.O.; Dietrich, J.; Anebagilu, P.K.; Beyer, M.; Rottensteiner, F. Rooftop rainwater harvesting for Mombasa: Scenario development with image classification and water resources simulation. Water 2017, 9, 359. [Google Scholar] [CrossRef]
- Krapf, J.L. Travels, Researches and Missionary Labours during an Eighteen Years’ Residence in Eastern Africa; Reprint; Frank Cass: London, UK, 1968. [Google Scholar]
- Mbilinyi, B.P.; Tumbo, S.D.; Mahoo, H.F.; Senkondo, E.M.; Hatibu, N. Indigenous knowledge as decision support tool in rainwater harvesting. Phys. Chem. Earth Parts A/B/C 2005, 30, 792–798. [Google Scholar] [CrossRef]
- Mati, B.M.; Malesu, M.; Oduor, A. Promoting Rainwater Harvesting Eastern and Southern Africa: The RELMA Experience; Working Paper 24; World Agroforestry Centre: Nairobi, Kenya, 2005. [Google Scholar]
- Stroosnijder, L.; Hoogmoed, W.B. Crust formation on sandy soils in the Sahel II: Tillage and its effects on the water balance. Soil Till. Res. 1984, 4, 321–337. [Google Scholar] [CrossRef]
- Rockström, J. Water resources management in smallholder farms in Eastern and Southern Africa: An overview. Phys. Chem. Earth B 2000, 25, 275–283. [Google Scholar] [CrossRef]
- Rockstrom, J.; Barron, J.; Fox, P. Rainwater management for increased productivity among smallholder farmers in drought prone environments. Phys. Chem. Earth 2002, 27, 949–959. [Google Scholar] [CrossRef]
- Rockstrom, J. Water for food and nature in drought-prone tropics: Vapor Shift in rainfed agriculture. Philos. Trans. Biol. Sci. 2003, 358, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Rockstrom, J.; Folke, C.; Gordon, L.; Hatibu, N.; Jewitt, G.; de Vries, P.F.; Rwehumbisa, F.; Sally, H.; Savenije, H.; Schulze, R. A watershed approach to upgrade rainfed agriculture in water scarce regions through Water System Innovations: An integrated research initiative on water for food and rural livelihoods in balance with ecosystem functions. Phys. Chem. Earth 2004, 29, 1109–1118. [Google Scholar] [CrossRef]
- Stroosnijder, L. Rainfall and land degradation. In Climate and Land Degradation; Sivakumar, M.V.K., Ndiang’ui, N., Eds.; Springer: New York, NY, USA, 2007; pp. 167–195. [Google Scholar]
- Rockström, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.; Temesgen, M.; Maweny, L.; Barron, J.; Mutu, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil Till. Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Stroosnijder, L. Modifying land management in order to improve efficiency of rainwater use in the African highlands. Soil Till. Res. 2009, 103, 247–256. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Howe, K.J.; Crittenden, J.C.; Hand, D.W.; Trussell, R.R.; Tchobanoglous, G. Principles of Water Treatment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; 674p. [Google Scholar]
- Leffmann, H. Direct and indirect methods of electrical purification of water. J. Frankl. Inst. 1907, 164, 205–216. [Google Scholar] [CrossRef]
- Rangarajan, R.; Ghosh, P. Rainwater Management and Harvesting Strategies for Human Needs: An Indian Perspective. Environ. Sci. Technol. 2011, 45, 9469–9494. [Google Scholar] [CrossRef] [PubMed]
- Mwamila, T.B.; Han, M.Y.; Katambara, Z. Strategy to Overcome Barriers of Rainwater Harvesting, Case Study Tanzania. J. Geosci. Environ. Protect. 2016, 4, 13–23. [Google Scholar] [CrossRef]
- Ndé-Tchoupé, A.I.; Nanseu-Njiki, C.P.; Hu, R.; Nassi, A.; Noubactep, C.; Licha, T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. Chemosphere 2018. in Press. [Google Scholar]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply. Rev. Perspect. Sust. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M. Progress in understanding the mechanism of CrVI Removal in Fe0-based filtration systems. Water 2018, 10, 651. [Google Scholar] [CrossRef]
- Lilje, J.; Mosler, H.-J. Continuation of health behaviors: Psychosocial factors sustaining drinking water chlorination in a longitudinal study from Chad. Sustainability 2016, 8, 1149. [Google Scholar] [CrossRef]
- Btatkeu-K, B.D.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Designing metallic iron based water filters: Light from methylene blue discoloration. J. Environ. Manag. 2016, 166, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Moglia, M.; Cook, S.; Tapsuwan, S. Promoting water conservation: Where to from here? Water 2018, 10, 1510. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Mitiku, H. The potential of in situ rain water harvesting for water resources conservation on malaria transmission in Tigray, Northern Ethiopia. Momona Ethiop. J. Sci. MEJS 2010, 2, 49–63. [Google Scholar]
- Kibret, S.; Wilson, G.G.; Tekie, H.; Petros, B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar. J. 2014, 13, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutero, C.M.; Blank, H.; Konradsen, F.; van der Hoek, W. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop. 2000, 3, 253–263. [Google Scholar] [CrossRef]
- Utzinger, J.; Tozan, Y.; Singer, B.H. Efficacy and cost-effectiveness of environmental management for malaria control. Trop. Med. Int. Health 2001, 9, 677–687. [Google Scholar] [CrossRef]
- Keiser, J.; Caldas de Castro, M.; Maltese, M.F.; Bos, R.; Tanner, M.; Singer, B.H.; Utzinger, J. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am. J. Trop. Med. Hyg. 2005, 72, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Lynch, M. Contributions of Anopheles larval control to malaria suppression in tropical Africa: Review of achievements and potential. Med. Vet. Entomol. 2007, 21, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Mwangangi, M.J.; Shililu, J.; Muturi, E.J.; Muriu, S.; Jacob, B.; Kabiru, E.W.; Mbogo, C.M.; Githure, J.; Novak, R.J. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar. J. 2010, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moglia, M.; Gan, K.; Delbridge, N.; Tjandraatmadja, G.; Gulizia, E.; Pollard, C.; Sharma, A.; Cook, S. Condition inspection of rainwater tanks in Melbourne. In Proceedings of the 36th Hydrology and Water Resources Symposium: The Art and Science of Water, Hobart, Australia, 7–10 December 2015; Engineers Australia: Barton, Australia, 2015; pp. 1413–1417. [Google Scholar]
- Moglia, M.; Gan, K.; Delbridge, N. Exploring methods to minimize the risk of mosquitoes in rainwater harvesting systems. J. Hydrol. 2016, 543, 324–329. [Google Scholar] [CrossRef]
- Moglia, M.; Gan, K.; Delbridge, N.; Sharma, A.K.; Tjandraatmadja, G. Investigation of pump and pump switch failures in rainwater harvesting systems. J. Hydrol. 2016, 538, 208–215. [Google Scholar] [CrossRef]
- Bashar, M.Z.I.; Karim, M.R.; Imteaz, M.A. Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh. Resour. Conserv. Recycl. 2018, 133, 146–154. [Google Scholar] [CrossRef]
For 10 L | For 1000 L | ||||
---|---|---|---|---|---|
R | C2 | V1 | V2 | V1 | V2 |
(-) | (mg/L) | (L) | (L) | (L) | (L) |
1.0 | 1.5 | 0.0 | 10.0 | 0 | 1000 |
1.1 | 1.7 | 1.0 | 9.0 | 100 | 900 |
1.3 | 1.9 | 2.0 | 8.0 | 200 | 800 |
1.4 | 2.1 | 3.0 | 7.0 | 300 | 700 |
1.7 | 2.5 | 4.0 | 6.0 | 400 | 600 |
2.0 | 3.0 | 5.0 | 5.0 | 500 | 500 |
2.5 | 3.8 | 6.0 | 4.0 | 600 | 400 |
3.3 | 5.0 | 7.0 | 3.0 | 700 | 300 |
5.0 | 7.5 | 8.0 | 2.0 | 800 | 200 |
10.0 | 15.0 | 9.0 | 1.0 | 900 | 100 |
Treatment Technology | Type of Contamination | Position in Chain |
---|---|---|
Gutter screening (e.g., grids) | Leaves and larger particles | Entrance before storage |
Coarse sand filtration | Particles and agglomerates | Entrance before storage |
Fine sand filtration | Agglomerates and colloids | Entrance after storage |
Slow sand filters (SSF) | Micro-organisms | After storage |
Blending | Lower fluoride concentration | After SSF treatment |
Adding desirable trace minerals | ||
Fe0-amended SSF | Chemicals and micro-organisms | After blending |
Mineralisation | Adding desirable trace minerals | After Fe0 filtration |
Pasteurization | Disinfection | At the end of the chain |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marwa, J.; Lufingo, M.; Noubactep, C.; Machunda, R. Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability 2018, 10, 4194. https://doi.org/10.3390/su10114194
Marwa J, Lufingo M, Noubactep C, Machunda R. Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park. Sustainability. 2018; 10(11):4194. https://doi.org/10.3390/su10114194
Chicago/Turabian StyleMarwa, Janeth, Mesia Lufingo, Chicgoua Noubactep, and Revocatus Machunda. 2018. "Defeating Fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a Rainwater Harvesting Park" Sustainability 10, no. 11: 4194. https://doi.org/10.3390/su10114194