Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wen, A.Y.; Yuan, X.Y.; Wang, J.; Deast, S.T.; Shao, T. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Jonsson, A.; Lindberg, H.; Sundås, S.; Lingvall, P.; Lindgren, S. Effect of additives on the quality of big-bale silage. Anim. Feed Sci. Technol. 1990, 31, 139–155. [Google Scholar] [CrossRef]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Magnusson, M.; Christiansson, A.; Svensson, B.; Kolstrup, C. Effect of different premilking manual teat-cleaning methods on bacterial spores in milk. J. Dairy Sci. 2006, 89, 3866–3875. [Google Scholar] [CrossRef]
- Arias, C.; Oliete, B.; Seseña, S.; Jiménez, L.; Palop, L.; Pérez-Guzmán, M.D.; Arias, R. Importance of on-farm management practices on lactate-fermenting Clostridium spp. spore contamination of total mixed ration of Manchega ewe feeding. Determination of risk factors and characterization of Clostridium population. Small Ruminant Res. 2016, 139, 39–45. [Google Scholar] [CrossRef]
- Ruusunen, M.; Surakka, A.; Korkeala, H.; Lindström, M. Clostridium tyrobutyricum Strains Show Wide Variation in Growth at Different NaCl, pH, and Temperature Conditions. J. Food Protect. 2012, 75, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Brändle, J.; Domig, K.J.; Kneifel, W. Relevance and analysis of butyric acid producing Clostridia in milk and cheese. Food Control 2016, 67, 96–113. [Google Scholar] [CrossRef]
- Berlin, J. Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int. Dairy J. 2002, 12, 939–953. [Google Scholar] [CrossRef]
- Klaenhammer, T. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 1993, 12, 39–85. [Google Scholar] [CrossRef] [PubMed]
- Rilla, N.; Martínez, B.; Delgado, T.; Rodríguez, A. Inhibition of Clostridium tyrobutyricum in Vidiano cheese by Lactococcus lactis ssp. lactis IPLA 729, a nisin Z producer. Int. J. Food Microbiol. 2003, 85, 23–33. [Google Scholar] [CrossRef]
- Ávila, M.; Gomez-Torres, N.; Hernandez, M.; Garde, S. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int. J. Food Microbiol. 2012, 172, 70–75. [Google Scholar] [CrossRef] [PubMed]
- D’Incecco, P.; Gatti, M.; Hogenboom, J.A.; Bottari, B.; Rosi, V.; Neviani, E.; Pellegrino, L. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiol. 2016, 57, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.B.A.; Margalho, L.P.; Nascimento, J.; Costa, L.E.O.; Portela, J.B.; Cruz, A.G.; Sant’Ana, Anderson, S. Processed cheese contamination by spore-forming bacteria: A review of sources, routes, fate during processing and control. Trends Food Sci. Technol. 2016, 57, 11–19. [Google Scholar]
- Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed]
- Bisig, W.; Fröhlich-Wyder, M.-T.; Jakob, E.; Wechsler, D. Comparison between Emmentaler PDO and generic emmental cheese production in Europe. Aust. J. Dairy Technol. 2010, 65, 206–213. [Google Scholar]
- Kitis, M. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 2004, 30, 47–55. [Google Scholar] [CrossRef]
- Heinonen-Tanski, H.; Miettinen, H. Performic acid as a potential disinfectant at low temperatures. J. Food Process Eng. 2010, 33, 1159–1172. [Google Scholar] [CrossRef]
- Karpova, T.; Pekonen, P.; Gramstad, R.; Öjstedt, U.; Laborda, S.; Heinonen-Tanski, H.; Chávez, A.; Jiménez, B. Performic acid for advanced wastewater disinfection. Water Sci. Technol. 2013, 68, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. New Disinfection and Sterilization Methods. Emerg. Infect. Dis. 2001, 7, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Broda, D.M. The effect of peroxyacetic acid-based sanitizer, heat and ultrasonic waves on the survival of Clostridium estertheticum spores in vitro. Lett. Appl. Microbiol. 2007, 45, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Eramo, A.; Morales Medina, W.R.; Fahrenfeld, N.L. Peracetic acid disinfection kinetics for combined sewer overflows: Indicator organisms, antibiotic resistance genes, and microbial community. Environ. Sci. Water Res. Technol. 2017, 3, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Heinonen-Tanski, H.; Niskanen, E.M.; Mielonen, M.M.; Räsänen, H.; Valta, T.; Leinonen, P.; Rinne, K.; Joki-Tokola, E. Aeration improves the hygiene of cattle slurry and the hygiene of grass forage and silage. Acta Agric. Scand. Soil Plant 1998, 48, 212–221. [Google Scholar] [CrossRef]
- Langó, Z.; Heinonen-Tanski, H. Occurrence of Clostridium tyrobutyricum in cattle slurry and fresh forage grasses. Bioresour. Technol. 1995, 53, 189–191. [Google Scholar] [CrossRef]
- Chhetri, R.K.; Thornberg, D.; Berner, J.; Gramstad, R.; Öjstedt, U.; Sharma, A.K.; Andersen, H.R. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acid. Sci. Total Environ. 2014, 490, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, T.; Heyninck, T.; Rämö, J.; Lassi, U. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion. Water Res. 2015, 85, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Domínguez Henao, L.; Delli Compagni, R.; Turolla, A.; Antonelli, M. Influence of inorganic and organic compounds on the decay of peracetic acid in wastewater disinfection. Chem. Eng. J. 2018, 337, 133–142. [Google Scholar] [CrossRef]
- Pedersen, L.-F.; Meinelt, T.; Straus, D.L. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications. Aqua. Eng. 2013, 53, 65–71. [Google Scholar] [CrossRef]
- Li, H.; Zhu, X.; Ni, J. Comparison of electrochemical method with ozonation, chlorination and monochlorammination in drinking water disinfection. Electrochim. Acta 2011, 56, 9789–9796. [Google Scholar] [CrossRef]
- Luukkonen, T.; Pehkonen, S. Peracids in water treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1–39. [Google Scholar] [CrossRef]
Clostridium Types | Strains | Peracetic Acid (PAA) mg L−1 | Performic Acid (PFA) mg L−1 | |||||
---|---|---|---|---|---|---|---|---|
30 | 60 | 110 | 220 | 30 | 60 | 120 | ||
Cl. tyrobutyricum | a | a | a | a | b | b | c | |
DSM-663 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | |
DSM-1460 | nt 1 | 0 | 0 | 0 | 0 | 2 | 4 | |
DSM-2637 | nt | 0 | 0 | 0 | 4 | 3 | 4 | |
NICMB-701790 | 0 | 0 | 0 | 0 | 2 | 4 | 3 | |
NICMB-701715 | nt | 0 | 0 | 0 | 2 | 0 | 4 | |
NICMB-701753 | 0 | 0 | 0 | 0 | 1 | 4 | 3 | |
NICMB-701754 | nt | 0 | 0 | 0 | 1 | 1 | 4 | |
NICMB-701755 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | |
NICMB-701756 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | |
NICMB-701757 | 0 | 0 | 0 | 0 | 4 | 3 | 4 | |
HA-56 | 0 | 0 | 0 | 0 | 4 | 4 | nt | |
Cl. propionicumlike | a | a | a | a | ab | b | b | |
PP-1 | nt | 0 | 0 | 0 | 2 | 4 | 4 | |
HL-17 | nt | 0 | 0 | 0 | 1 | 2 | 3 | |
KI-12 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | |
KA-4 | nt | 0 | 0 | 0 | 3 | 4 | 4 | |
HA-13 | 0 | 0 | 0 | 0 | 2 | 3 | 3 | |
HA-18 2 | nt | nt | 0 | 0 | 3 | 3 | 4 | |
HA-19 | nt | 4 | 4 | 4 | 4 | 4 | 4 | |
Cl. malenominatum | a | a | ab | abc | bc | c | c | |
222-IIIa | 0 | 0 | 0 | 3 | 4 | 4 | 4 | |
222-IIIb | 0 | 0 | 2 | 4 | 4 | 4 | 4 | |
HL-54 | 0 | 0 | 0 | 0 | 2 | 4 | 4 | |
HL-55 | nt | 0 | 3 | 2 | 3 | 4 | 4 | |
Unidentified clostridia | a | a | a | a | ab | bc | c | |
HL-27 | nt | 0 | 0 | 0 | 0 | 0 (2) 3 | 4 | |
HL-22 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | |
HL-56 | nt | 0 | 0 | 0 | 2 | 3 | 4 | |
NU-7 | 0 | 0 | 0 | 0 | 0 | 1 (2) 3 | 4 | |
PP-51 | 0 | 0 | 0 | 0 | 3 | 3 (2) 3 | 4 | |
Pt-25 | nt | 0 | 0 | 0 | 3 | 3 | 4 | |
HA-14 | nt | nt | 1 | 4 | 3 | 3 | 4 | |
PP-24 | nt | 3 | 4 | 4 | 4 | 4 | 4 |
Peracid | Clostridium Type | Strains | Concentration mg L−1 | Exposure Time | |
---|---|---|---|---|---|
5 min | 10 min | ||||
PAA | Cl. tyrobutyricum | DSM-1460, NCIMB-701715, -701754 and -701755 | 60, 110 and 220 | 0 | 0 |
Cl. propionicumlike | PP-1, HL-17 and KA-4 | 60, 110 and 220 | 0 | 0 | |
Cl. malenominatum | 222-IIIa | 60 | 0 | 2 | |
110 | 0 | 4 | |||
220 | 3 | 4 | |||
Unidentified clostridia | HL-27 and HL-22 | 60, 110 and 220 | 0 | 0 | |
PFA | Cl. tyrobutyricum | DSM-1460 | 60 | 2 | 3 |
120 | 4 | 4 | |||
NCIMB-701715 | 60 | 0 | 3 | ||
120 | 4 | 4 | |||
NCIMB-701754 | 30 | 1 | 4 | ||
60 | 1 | 4 | |||
120 | 4 | 4 | |||
NCIMB-701755 | 30 | 0 | 2 | ||
60 | 0 | 4 | |||
120 | 4 | 4 | |||
Cl. propionicumlike | PP-1 | 30 | 2 | 3 | |
60 and 120 | 4 | 4 | |||
HL-17 | 30 | 1 | 4 | ||
60 | 2 | 4 | |||
120 | 3 | 4 | |||
KA-4 | 60 and 120 | 4 | 4 | ||
Cl. malenominatum | 222-IIIa | 30, 60 and 120 | 4 | 4 | |
Unidentified clostridia | HL-27 | 30 | 0 | 4 | |
60 | 0 (2) 1 | 4 | |||
120 | 4 | 4 | |||
HL-22 | 60 | 2 | 4 | ||
120 | 4 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora, M.; Veijalainen, A.-M.; Heinonen-Tanski, H. Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid. Sustainability 2018, 10, 4116. https://doi.org/10.3390/su10114116
Mora M, Veijalainen A-M, Heinonen-Tanski H. Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid. Sustainability. 2018; 10(11):4116. https://doi.org/10.3390/su10114116
Chicago/Turabian StyleMora, Maximilian, Anna-Maria Veijalainen, and Helvi Heinonen-Tanski. 2018. "Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid" Sustainability 10, no. 11: 4116. https://doi.org/10.3390/su10114116
APA StyleMora, M., Veijalainen, A.-M., & Heinonen-Tanski, H. (2018). Performic Acid Controls Better Clostridium tyrobutyricum Related Bacteria than Peracetic Acid. Sustainability, 10(11), 4116. https://doi.org/10.3390/su10114116