Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Description of Test Housing Units
2.3. Particle Infiltration Test Method Using the Blower-Door Depressurization Procedure
2.4. Indoor-Outdoor Target Differential Pressure
2.5. Air Leakage Testing of Housing Units
3. Results and Discussion
3.1. Outdoor Particle Concentration
3.2. Air Leakage Characteristics
3.3. The I/O Ratios at a Typical I-O Pressure Difference of 10 Pa
3.4. The I/O Ratios at Increased I-O Pressure Differences of 30 Pa and 50 Pa
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pope, C.A.; Bates, D.V.; Raizenne, M.E. Health effects of particulate air pollution: Time for reassessment? Environ. Health Perspect. 1995, 103, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Liu, E.; Verrier, R.L.; Schwartz, J.; Gold, D.R.; Mittleman, M.; Baliff, J.; Oh, J.A.; Allen, G.; Monahan, K.; et al. Air pollution and incidence of cardiac arrhythmia. Epidemiology 2000, 11, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Holgate, S. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Du, X.; Kong, Q.; Ge1, W.H.; Zhang, S.J.; Fu, L.X. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. J. Environ. Sci. 2010, 22, 1757–1764. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, B. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Build. Environ. 2015, 90, 196–205. [Google Scholar] [CrossRef]
- Fujitani, Y.; Kumar, P.; Tamura, K.; Fushimi, A.; Hasegawa, S.; Takahashi, K.; Tanabe, K.; Kobayashi, S.; Hirano, S. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan. Sci. Total Environ. 2012, 437, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Chang, S.H.; Lu, R.; Liou, D.M. The effect of particulate matter size on cardiovascular health in Taipei Basin, Taiwan. Comput. Method. Progr. Biomed. 2016, 137, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.P.; Kim, K.H.; Ahn, J.W.; Shon, Z.H.; Sohn, J.R.; Lee, J.H.; Ma, C.J.; Brown, R.J.C. Ambient particulate matter (PM10) concentrations in major urban areas of Korea during 1996–2010. Atmos. Pollut. Res. 2014, 5, 161–169. [Google Scholar] [CrossRef]
- Peterson, J.T.; Junge, C.E. Sources of particulate matter in the atmosphere. In Man’s Impact on the Climate; Matthews, W.H., Kellogg, W.H., Robinson, G.D., Eds.; MIT Press: Boston, MA, USA, 1971. [Google Scholar]
- Mage, D.; Ozolins, G.; Peterson, P.; Webster, A.; Orthofer, R.; Vandeweerd, V.; Gwynne, M. Urban air pollution in megacities of the world. Atmos. Environ. 1996, 30, 681–686. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Nazaroff, W.W. Indoor particle dynamics. Indoor Air 2004, 14, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.W.; Shen, H.Y. Indoor and outdoor PM2.5 and PM10 concentrations in the air during a dust storm. Build. Environ. 2010, 45, 610–614. [Google Scholar] [CrossRef]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Korean Ministry of Environment. Available online: http://www.me.go.kr (accessed on 2 November 2018).
- Liu, D.L.; Nazaroff, W.W. Modeling pollutant penetration across building envelopes. Build. Environ. 2001, 35, 4451–4462. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Layton, D.W. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Hussein, T.; Hämeri, K.; Heikkinen, M.S.A.; Kulmala, M. Indoor and outdoor particle size characterization at a family house in Espoo-Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Coull, B.A.; Ruiz, P.A.; Koutrakis, P.; Suh, H.H. The Influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, Residences. Air Waste Manag. Assoc. 2006, 45, 186–196. [Google Scholar] [CrossRef]
- Stephens, B.; Siegel, J.A. Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air 2012, 22, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.H.; Wan, M.P.; Cheng, E.C.K. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmos. Environ. 2003, 37, 4233–4241. [Google Scholar] [CrossRef]
- Mullen, N.A.; Liu, C.; Zhang, Y.; Wang, S.; Nazaroff, W.W. Ultrafine particle concentrations and exposures in four high-rise Beijing apartments. Atmos. Envion. 2011, 45, 7574–7582. [Google Scholar] [CrossRef]
- Mosley, R.B.; Greenwell, D.J.; Sparks, L.E.; Guo, Z.; Tucker, W.G.; Fortmann, R.; Whitfield, C. Penetration of ambient fine particles into the indoor environment. Aerosol Sci. Technol. 2001, 34, 127–136. [Google Scholar] [CrossRef]
- Liu, D.L.; Nazaroff, W.W. Particle penetration through building cracks. Aerosol Sci. Technol. 2003, 37, 565–573. [Google Scholar] [CrossRef]
- ISO/TC 163. ISO 9972: 2015 Thermal Performance of Buildings—Determination of Air Permeability of Buildings—Fan Pressurization Method; International Organization for Standardization: Geneva, Switzerland, 2015. [Google Scholar]
- Hong, W.K.; Kim, J.M.; Park, S.C.; Lee, S.G.; Kim, S.I.; Yoon, K.J.; Kim, H.C.; Kim, J.T. A new apartment construction technology with effective CO2 emission reduction capabilities. Energy 2010, 35, 2639–2646. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kurnitski, J. Ventilation and Airtightness in Houses; Builders’ Yearbook: Helsinki, Finland, 2006. [Google Scholar]
- Kalamees, T.; Kurnitski, J.; Jokisalo, J.; Eskola, L.; Jokiranta, K.; Vinha, J. Air pressure conditions in Finnish residences. In Proceedings of the Clima 2007 WellBeing Indoors, Helsinki, Finland, 10–14 June 2007. [Google Scholar]
- Jo, J.H.; Lim, J.H.; Song, S.Y.; Yeo, M.S.; Kim, K.W. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings. Build. Environ. 2007, 42, 263–277. [Google Scholar] [CrossRef]
- ASTM E779-10. Standard Test Method for Determining Air Leakage Rate by Fan Pressurization; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings; American Society of Heating, Refrigerating & Air Conditioning Engineers: Atlanta, GA, USA, 1988. [Google Scholar]
- AirKorea. Available online: http://airkorea.or.kr (accessed on 2 November 2018).
- WHO. Health Effects of Particulate Matter; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- PHI. Passive House Planning Package 2007; Passive House Institute: Darmstadt, Germany, 2007. [Google Scholar]
- Wallace, L.; Howard-Reed, C. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999–2000. J. Air Waste Manag. Assoc. 2002, 52, 828–844. [Google Scholar] [CrossRef] [PubMed]
- Orch, Z.E.; Stephens, B.; Waring, M.S. Predictions and determinants of size-resolved particle infiltration factors in single-family homes in the U.S. Build. Environ. 2014, 74, 106–118. [Google Scholar] [CrossRef]
Housing Unit | Construction Year (years) | Floor Area (m2) | Ceiling Height (m) | Volume (m3) | Envelope Area (m2) |
---|---|---|---|---|---|
1 | 1979 | 57 | 2.15 | 123 | 40 |
2 | 1982 | 36 | 2.30 | 83 | 18 |
3 | 1996 | 143 | 2.30 | 329 | 61 |
4 | 1996 | 50 | 2.30 | 115 | 28 |
5 | 1997 | 212 | 2.30 | 488 | 69 |
6 | 2002 | 36 | 2.30 | 83 | 18 |
7 | 2002 | 65 | 2.25 | 146 | 50 |
8 | 2004 | 85 | 2.30 | 196 | 45 |
9 | 2006 | 85 | 2.30 | 196 | 50 |
10 | 2006 | 130 | 2.30 | 299 | 55 |
11 | 2010 | 20 | 2.15 | 43 | 19 |
12 | 2012 | 18 | 2.30 | 41 | 13 |
13 | 2015 | 36 | 2.30 | 83 | 32 |
14 | 2015 | 36 | 2.30 | 83 | 32 |
Housing Unit | C (m3·h−1·Pa−n) | n (-) | ELA (cm2) | NL (-) | ACH50 (h−1) | Leakage Class |
---|---|---|---|---|---|---|
1 | 136.0 | 0.69 | 381.4 | 0.64 | 12.4 | G |
2 | 58.3 | 0.60 | 144.3 | 0.39 | 7.5 | E |
3 | 149.9 | 0.62 | 378.8 | 0.26 | 4.9 | D |
4 | 144.1 | 0.57 | 342.7 | 0.67 | 11.7 | G |
5 | 159.6 | 0.67 | 435.4 | 0.20 | 4.0 | C |
6 | 81.9 | 0.59 | 199.7 | 0.54 | 9.8 | F |
7 | 89.2 | 0.57 | 212.1 | 0.32 | 5.5 | E |
8 | 70.8 | 0.66 | 191.0 | 0.22 | 4.2 | D |
9 | 49.1 | 0.65 | 130.7 | 0.15 | 3.1 | C |
10 | 99.3 | 0.60 | 246.8 | 0.19 | 3.4 | C |
11 | 38.2 | 0.63 | 97.9 | 0.47 | 10.3 | F |
12 | 2.5 | 0.82 | 8.4 | 0.05 | 1.4 | A |
13 | 14.6 | 0.74 | 43.7 | 0.12 | 3.1 | B |
14 | 13.8 | 0.77 | 43.0 | 0.12 | 3.4 | B |
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
---|---|---|---|---|---|---|---|
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.80 ± 0.05 | 0.66 ± 0.11 | 0.65 ± 0.02 | 0.65 ± 0.06 | 0.43 ± 0.07 | 0.32 ± 0.13 | 0.19 |
2 | 0.72 ± 0.05 | 0.80 ± 0.03 | 0.66 ± 0.07 | 0.67 ± 0.13 | 0.40 ± 0.08 | 0.27 ± 0.05 | 0.35 |
3 | 0.94 ± 0.02 | 0.75 ± 0.03 | 0.75 ± 0.03 | 0.41 ± 0.05 | 0.33 ± 0.02 | 0.17 ± 0.03 | 0.81 |
4 | 1.09 ± 0.13 | 1.04 ± 0.14 | 1.05 ± 0.02 | 0.89 ± 0.05 | 0.83 ± 0.07 | 0.81 ± 0.12 | 0.20 |
5 | 0.62 ± 0.02 | 0.45 ± 0.05 | 0.33 ± 0.02 | 0.45 ± 0.05 | 0.32 ± 0.12 | 0.40 ± 0.14 | 0.69 |
6 | 0.75 ± 0.03 | 0.78 ± 0.01 | 0.52 ± 0.02 | 0.45 ± 0.05 | 0.29 ± 0.03 | 0.24 ± 0.07 | 0.27 |
7 | 0.73 ± 0.13 | 0.70 ± 0.22 | 0.62 ± 0.02 | 0.65 ± 0.03 | 0.41 ± 0.05 | 0.28 ± 0.08 | 0.45 |
8 | 0.73 ± 0.02 | 0.51 ± 0.09 | 0.52 ± 0.02 | 0.44 ± 0.06 | 0.28 ± 0.04 | 0.20 ± 0.18 | 1.00 |
9 | 0.34 ± 0.02 | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.17 ± 0.03 | 0.09 ± 0.03 | 0.09 ± 0.05 | 0.88 |
10 | 0.71 ± 0.06 | 0.70 ± 0.02 | 0.79 ± 0.04 | 0.41 ± 0.06 | 0.46 ± 0.11 | 0.26 ± 0.12 | 0.72 |
11 | 0.92 ± 0.06 | 0.86 ± 0.14 | 0.68 ± 0.05 | 0.80 ± 0.17 | 0.55 ± 0.15 | 0.44 ± 0.18 | 0.25 |
12 | 0.43 ± 0.03 | 0.48 ± 0.01 | 0.43 ± 0.03 | 0.49 ± 0.07 | 0.35 ± 0.10 | 0.49 ± 0.16 | 2.79 |
13 | 0.73 ± 0.05 | 0.63 ± 0.07 | 0.58 ± 0.02 | 0.29 ± 0.04 | 0.25 ± 0.04 | 0.21 ± 0.05 | 1.03 |
14 | 0.78 ± 0.10 | 0.65 ± 0.08 | 0.58 ± 0.02 | 0.30 ± 0.02 | 0.31 ± 0.04 | 0.27 ± 0.10 | 0.93 |
Average | 0.73 ± 0.19 | 0.66 ± 0.21 | 0.60 ± 0.21 | 0.51 ± 0.20 | 0.38 ± 0.17 | 0.32 ± 0.18 | - |
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.95 ± 0.07 | 0.92 ± 0.06 | 0.70 ± 0.01 | 0.68 ± 0.04 | 0.48 ± 0.05 | 0.35 ± 0.09 | 0.11 |
2 | 0.74 ± 0.08 | 0.89 ± 0.09 | 0.65 ± 0.02 | 0.78 ± 0.04 | 0.56 ± 0.08 | 0.46 ± 0.10 | 0.18 |
3 | 0.88 ± 0.11 | 0.98 ± 0.08 | 0.77 ± 0.06 | 0.48 ± 0.11 | 0.38 ± 0.08 | 0.22 ± 0.07 | 0.41 |
4 | 1.04 ± 0.04 | 0.91 ± 0.07 | 0.73 ± 0.03 | 0.72 ± 0.02 | 0.53 ± 0.07 | 0.63 ± 0.17 | 0.11 |
5 | 0.69 ± 0.04 | 0.52 ± 0.07 | 0.42 ± 0.01 | 0.57 ± 0.07 | 0.48 ± 0.13 | 0.29 ± 0.07 | 0.34 |
6 | 1.04 ± 0.07 | 0.91 ± 0.15 | 0.73 ± 0.02 | 0.72 ± 0.08 | 0.53 ± 0.08 | 0.63 ± 0.16 | 0.14 |
7 | 1.00 ± 0.18 | 0.69 ± 0.07 | 0.63 ± 0.04 | 0.70 ± 0.11 | 0.47 ± 0.07 | 0.34 ± 0.06 | 0.24 |
8 | 0.91 ± 0.05 | 0.71 ± 0.15 | 0.62 ± 0.04 | 0.47 ± 0.05 | 0.27 ± 0.04 | 0.13 ± 0.04 | 0.34 |
9 | 0.45 ± 0.03 | 0.34 ± 0.06 | 0.29 ± 0.01 | 0.26 ± 0.03 | 0.14 ± 0.03 | 0.07 ± 0.03 | 0.45 |
10 | 0.74 ± 0.01 | 0.69 ± 0.03 | 0.70 ± 0.04 | 0.34 ± 0.04 | 0.31 ± 0.04 | 0.15 ± 0.04 | 0.39 |
11 | 0.84 ± 0.04 | 0.79 ± 0.06 | 0.60 ± 0.15 | 0.68 ± 0.29 | 0.47 ± 0.25 | 0.34 ± 0.15 | 0.13 |
12 | 0.49 ± 0.01 | 0.47 ± 0.01 | 0.33 ± 0.00 | 0.32 ± 0.03 | 0.24 ± 0.03 | 0.37 ± 0.11 | 1.05 |
13 | 0.89 ± 0.19 | 0.81 ± 0.16 | 0.73 ± 0.10 | 0.37 ± 0.05 | 0.30 ± 0.08 | 0.29 ± 0.20 | 0.47 |
14 | 0.87 ± 0.03 | 0.69 ± 0.03 | 0.73 ± 0.10 | 0.37 ± 0.03 | 0.34 ± 0.07 | 0.28 ± 0.15 | 0.44 |
Average | 0.82 ± 0.19 | 0.74 ± 0.19 | 0.62 ± 0.16 | 0.53 ± 0.18 | 0.39 ± 0.13 | 0.32 ± 0.17 | - |
(a) | |||||||
Housing Unit Code | Particle I/O Ratios (Average ± Standard Deviation) | Time Constant, τ (h) | |||||
0.3–0.5 μm | 0.5–1.0 μm | 1.0–3.0 μm | 3.0–5.0 μm | 5.0–10.0 μm | >10.0 μm | ||
1 | 0.92 ± 0.03 | 0.89 ± 0.04 | 0.66 ± 0.03 | 0.64 ± 0.07 | 0.45 ± 0.08 | 0.40 ± 0.06 | 0.08 |
2 | 0.82 ± 0.05 | 0.61 ± 0.17 | 0.63 ± 0.02 | 0.66 ± 0.05 | 0.42 ± 0.05 | 0.34 ± 0.09 | 0.13 |
3 | 0.95 ± 0.01 | 1.04 ± 0.03 | 0.78 ± 0.02 | 0.50 ± 0.08 | 0.43 ± 0.06 | 0.32 ± 0.04 | 0.20 |
4 | 1.01 ± 0.03 | 0.99 ± 0.05 | 1.00 ± 0.01 | 0.83 ± 0.04 | 0.80 ± 0.05 | 0.64 ± 0.04 | 0.09 |
5 | 0.66 ± 0.06 | 0.49 ± 0.05 | 0.37 ± 0.02 | 0.48 ± 0.05 | 0.42 ± 0.08 | 0.59 ± 0.16 | 0.25 |
6 | 0.98 ± 0.07 | 1.02 ± 0.04 | 0.74 ± 0.02 | 0.77 ± 0.08 | 0.61 ± 0.14 | 0.66 ± 0.22 | 0.10 |
7 | 0.93 ± 0.06 | 0.81 ± 0.10 | 0.63 ± 0.02 | 0.68 ± 0.06 | 0.47 ± 0.07 | 0.43 ± 0.12 | 0.18 |
8 | 0.78 ± 0.11 | 0.53 ± 0.05 | 0.51 ± 0.01 | 0.40 ± 0.03 | 0.22 ± 0.03 | 0.10 ± 0.02 | 0.24 |
9 | 0.46 ± 0.02 | 0.33 ± 0.05 | 0.28 ± 0.01 | 0.31 ± 0.02 | 0.15 ± 0.03 | 0.13 ± 0.07 | 0.32 |
10 | 0.77 ± 0.06 | 0.68 ± 0.02 | 0.68 ± 0.03 | 0.39 ± 0.06 | 0.41 ± 0.13 | 0.26 ± 0.11 | 0.30 |
11 | 0.76 ± 0.30 | 0.83 ± 0.09 | 0.65 ± 0.04 | 0.77 ± 0.12 | 0.50 ± 0.06 | 0.48 ± 0.19 | 0.10 |
12 | 0.55 ± 0.16 | 0.55 ± 0.10 | 0.32 ± 0.02 | 0.22 ± 0.06 | 0.13 ± 0.03 | 0.22 ± 0.06 | 0.69 |
13 | 1.04 ± 0.08 | 0.98 ± 0.31 | 0.85 ± 0.06 | 0.41 ± 0.03 | 0.38 ± 0.07 | 0.59 ± 0.19 | 0.32 |
14 | 1.01 ± 0.04 | 0.65 ± 0.04 | 0.72 ± 0.01 | 0.36 ± 0.04 | 0.35 ± 0.06 | 0.30 ± 0.11 | 0.29 |
Average | 0.83 ± 0.18 | 0.74 ± 0.23 | 0.67 ± 0.19 | 0.57 ± 0.18 | 0.45 ± 0.16 | 0.44 ± 0.23 | - |
(b) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.H.; Kang, D.H. Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability 2018, 10, 4074. https://doi.org/10.3390/su10114074
Choi DH, Kang DH. Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability. 2018; 10(11):4074. https://doi.org/10.3390/su10114074
Chicago/Turabian StyleChoi, Dong Hee, and Dong Hwa Kang. 2018. "Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments" Sustainability 10, no. 11: 4074. https://doi.org/10.3390/su10114074
APA StyleChoi, D. H., & Kang, D. H. (2018). Indoor/Outdoor Relationships of Airborne Particles under Controlled Pressure Difference across the Building Envelope in Korean Multifamily Apartments. Sustainability, 10(11), 4074. https://doi.org/10.3390/su10114074