The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meander-Shaped Chamber (Serpentine Reactor)
2.2. Titanium Dioxide Coating
2.3. Irradiation
2.4. Gas Analysis
2.5. Engine
2.6. Calculation Methods
3. Results
3.1. Conversions
3.2. Emissions per Kilometre Travelled
3.3. Prolonged Exposure
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LED | Light Emitting Diode |
NO2 | Nitrogen Dioxide |
NO | Nitrogen Oxide |
NOx | Nitogen Oxides |
N2O | Nitrous Oxide |
RH | Relative Humidity |
RTDa | Resistance Temperature Detectors |
SCR | Selective Catalytic Reduction |
UV | Ultraviolet |
VOCs | Volatile Organic Compounds |
References
- Lammel, G.; Graßl, H. Greenhouse effect of NOX. Environ. Sci. Pollut. Res. Int. 1995, 2, 40–45. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Regulation (EC) No 715/2007 of the European Parliament and the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information: L 171/1, 29.6.2007; The European Parliament and the Council of the European Union: Brussels, Belgium, 2007.
- Sindhu, R.; Amba Prasad Rao, G.; Madhu Murthy, K. Effective reduction of NOx emissions from diesel engine using split injections. Alexandria Eng. J. 2017. [Google Scholar] [CrossRef]
- Talebizadeh, P.; Rahimzadeh, H.; Babaie, M.; Javadi Anaghizi, S.; Ghomi, H.; Ahmadi, G.; Brown, R. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor. PLoS ONE 2015, 10, e0140897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, T.K.; White, R.A.; Peters, J.E. Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a Spark Ignition Engine; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1993. [Google Scholar]
- Marner, B. Emissions of Nitrogen Oxides from Modern Diesel Vehicles; Air Quality Consultants: Bristol, UK, 2016. [Google Scholar]
- Topsøe, N.Y. Catalysis for NOx abatement. In CATTECH; Baltzar Science Publishers: Amsterdam, The Netherlands, 1997; pp. 125–136. [Google Scholar]
- Engeler, W.; Neyer, D.; Kosters, M.; Hesse, D. Method for Purifying Exhaust Gases. US Patent 6153159A, 28 November 2000. [Google Scholar]
- Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J. Apparatus for Photocatalytic Destruction of Internal Combustion Engine Emissions During Cold Start. US Patent 5778664A, 14 July 1998. [Google Scholar]
- Kaviratna, P.D.; Peden, C.H.F. Photocatalytic Destruction of Automobile Exhaust Emissions. In Heterogeneous Hydrocarbon Oxidation; ACS Symposium Series, 0097-6156; Warren, B.K., Oyama, S.T., Eds.; American Chemical Society: Washington, DC, USA, 1996; Volume 638, pp. 428–435. [Google Scholar]
- Maggos, T.; Bartzis, J.G.; Liakou, M.; Gobin, C. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J. Hazard. Mater. 2007, 146, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Mergel, D.; Buschendorf, D.; Eggert, S.; Grammes, R.; Samset, B. Density and Refractive Index of TiO2 Films Prepared by Reactive Evaporation. Thin Solid Films 2000, 371, 218–224. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Italcementi Group. TX Active(R): The Photocatalytic Active Principle; Technical Report; Italcementi Group: Bergamo, Italy, 2014. [Google Scholar]
- Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Dalton, J.; Janes, P.; Jones, N.; Nicholson, J.; Hallam, K.; Allen, G. Photocatalytic oxidation of NOx gases using TiO 2: A surface spectroscopic approach. Environ. Pollut. 2002, 120, 415–422. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wang, Z. A study on kinetics of NO absorption from flue gas by using UV/Fenton wet scrubbing. Chem. Eng. J. 2012, 197, 468–474. [Google Scholar] [CrossRef]
- Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R.H. Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice. Cancer Res. 2009, 69, 8784–8789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.D.; Stotland, M.; Ellis, J.I. The safety of nanosized particles in titanium dioxide– and zinc oxide–based sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Grassian, V.H.; O’shaughnessy, P.T.; Adamcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007, 115, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.J.; Reipa, V.; Watson, S.S.; Stanley, D.L.; Rabb, S.A.; Nelson, B.C. DNA damaging potential of photoactivated p25 titanium dioxide nanoparticles. Chem. Res. Toxicol. 2014, 27, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Maggos, T.; Bartzis, J.G.; Leva, P.; Kotzias, D. Application of photocatalytic technology for NOx removal. Appl. Phys. A 2007, 89, 81–84. [Google Scholar] [CrossRef]
- Hüsken, G.; Hunger, M.; Ballari, M.M.; Brouwers, H.J.H. The Effect of Various Process Conditions on the Photocatalytic Degradation of NO. In Nanotechnology in Construction 3; Bittnar, Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 223–229. [Google Scholar]
- Berdahl, P.; Akbari, H. Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008. [Google Scholar]
- El Zein, A.; Bedjanian, Y. Interaction of NO2 with TiO2 surface under UV irradiation: Measurements of the uptake coefficient. Atmos. Chem. Phys. 2012, 12, 1013–1020. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.M.; Péruchon, L.; Puzenat, E.; Guillard Chantal. Photocatalysis: From fundamentals to self-cleaning glass applications. In International RILEM Symposium on Photocatalysis, Environment and Construction Materials, TDP 2007; Baglioni, P., Ed.; RILEM Proceedings PRO, RILEM Publ: Bagneux, France, 2007; pp. 41–48. [Google Scholar]
- Evonik Resource Efficiency GmbH. SILIKOPHEN® P 40/W: Data Sheet; Evonik Resource Efficiency GmbH: Essen, Germany, 2016. [Google Scholar]
- Richters, C. SILIKOPHEN® P 40 W: Regulatory Data Sheet; Evonik Resource Efficiency GmbH: Essen, Germany, 2015. [Google Scholar]
- Government of Canada. Natural Resources Canada NRC, Fuel Consumption Ratings; Government of Canada: Ottawa, ON, Canada, 2018.
- Suib, S.L. New and Future Developments in Catalysis: Solar Photocatalysis; Elsevier Science: Burlington, MA, USA, 2013. [Google Scholar]
- Bedjanian, Y.; El Zein, A. Interaction of NO2 with TiO2 surface under UV irradiation: Products study. J. Phys. Chem. A 2012, 116, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
Stage | Year | CO/(g/km) | HC/(g/km) | HC + NOx/(g/km) | NOx/(g/km)/(g/km) | PM/(g/km) |
---|---|---|---|---|---|---|
Euro 1 | 1992 | 3.16 | - | 1.13 | - | 0.18 |
Euro 2, IDI | 1996 | 1.0 | - | 0.7 | - | 0.08 |
Euro 2, DI | 1996 | 1.0 | - | 0.9 | - | 0.10 |
Euro 3 | 2000 | 0.64 | - | 0.56 | 0.50 | 0.05 |
Euro 4 | 2005 | 0.50 | - | 0.30 | 0.25 | 0.025 |
Euro 5a | 2009 | 0.50 | - | 0.23 | 0.18 | 0.005 |
Euro 5b | 2011 | 0.50 | - | 0.23 | 0.18 | 0.005 |
Euro 6 | 2014 | 0.50 | - | 0.17 | 0.08 | 0.005 |
25 | 50 | 75 | 100 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run | t | RH | NO | X | RH | NO | X | RH | NO | X | RH | NO | X |
/min | /% | /ppm | /% | /% | /ppm | /% | /% | /ppm | /% | /% | /ppm | /% | |
begin | 727 | 730 | 783 | 700 | |||||||||
# 1 | 0 | 83.2 | 786 | 77.0 | 780 | 83.1 | 822 | 85.0 | 776 | ||||
1 | 82.4 | 493 | 37.3 | 76.4 | 572 | 26.7 | 82.5 | 579 | 29.6 | 84.4 | 603 | 22.3 | |
2 | 81.7 | 520 | 33.8 | 75.9 | 609 | 21.9 | 82.2 | 625 | 24.0 | 83.8 | 628 | 19.1 | |
3 | 81.0 | 571 | 27.4 | 75.4 | 628 | 19.5 | 81.7 | 648 | 21.2 | 83.1 | 646 | 16.8 | |
4 | 80.3 | 585 | 25.6 | 75.0 | 659 | 15.5 | 81.7 | 678 | 17.5 | 82.2 | 652 | 16.0 | |
5 | 79.4 | 606 | 22.9 | 74.6 | 670 | 14.1 | 81.3 | 701 | 14.7 | 81.5 | 67ß | 13.7 | |
return | 779 | 829 | 851 | 762 | |||||||||
# 2 | 0 | 75.5 | 822 | 72.0 | 829 | 77.6 | 851 | 80.0 | 807 | ||||
1 | 75.1 | 575 | 30.1 | 71.5 | 603 | 27.3 | 77.4 | 633 | 25.6 | 80.1 | 600 | 25.7 | |
2 | 74.7 | 608 | 26.6 | 71.1 | 633 | 23.6 | 77.0 | 662 | 22.2 | 80.5 | 640 | 20.7 | |
3 | 74.3 | 662 | 19.5 | 70.9 | 640 | 22.8 | 76.5 | 684 | 19.6 | 80.3 | 660 | 18.2 | |
4 | 74.0 | 671 | 18.4 | 70.6 | 655 | 21.0 | 76.4 | 674 | 20.8 | 80.0 | 654 | 19.0 | |
5 | 73.6 | 685 | 16.7 | 70.4 | 655 | 21.0 | 76.3 | 681 | 20.0 | 79.7 | 666 | 17.5 | |
return | 814 | 762 | 807 | 780 | |||||||||
# 3 | 0 | 71.1 | 861 | 75.2 | 770 | 75.3 | 836 | 80.6 | 768 | ||||
1 | 70.8 | 655 | 23.9 | 75.3 | 541 | 29.7 | 75.1 | 618 | 26.1 | 81.7 | 616 | 19.8 | |
2 | 70.5 | 694 | 19.4 | 75.2 | 556 | 27.8 | 75.0 | 654 | 21.8 | 81.9 | 623 | 18.9 | |
3 | 70.3 | 708 | 17.8 | 75.0 | 586 | 23.9 | 75.0 | 670 | 19.9 | 81.8 | 628 | 18.2 | |
4 | 70.1 | 724 | 15.9 | 74.8 | 594 | 22.9 | 74.8 | 680 | 18.7 | 81.6 | 658 | 14.3 | |
5 | 69.9 | 732 | 15.0 | 74.5 | 602 | 21.8 | 75.9 | 671 | 19.7 | 81.4 | 652 | 15.1 |
/% | /% | /% | |
---|---|---|---|
UV at 25% | 18.31 | 16.47 | 17.68 |
UV at 50% | 19.82 | 19.93 | 19.86 |
UV at 75% | 13.59 | 14.76 | 14.06 |
UV at 100% | 14.05 | 18.44 | 15.93 |
UV/% | /°C | /°C | Pa | Pa | n/(1/min) |
---|---|---|---|---|---|
No set-up | 25.93 | 25.43 | 1017.97 | ||
0 | 35.10 | 27.16 | |||
25 | 22.68 | 24.56 | |||
50 | 27.24 | 25.11 | |||
75 | 27.67 | 26.02 | 958.07 | ||
100 | 28.93 | 27.95 |
UV/% | /(g/mol) | ||||
---|---|---|---|---|---|
No set-up | 36.24 | 0.308 ± 0.006 | 1.839 ± 0.038 | 1.526 ± 0.031 | 0.099 ± 0.002 |
0 | 35.99 | 0.282 ± 0.008 | 1.694 ± 0.046 | 1.406 ± 0.046 | 0.091 ± 0.003 |
25 | 36.09 | 0.214 ± 0.024 | 1.283 ± 0.145 | 1.064 ± 0.120 | 0.069 ± 0.008 |
50 | 36.44 | 0.210 ± 0.013 | 1.261 ± 0.078 | 1.047 ± 0.065 | 0.068 ± 0.004 |
75 | 36.06 | 0.196 ± 0.009 | 1.165 ± 0.054 | 0.967 ± 0.045 | 0.063 ± 0.003 |
100 | 36.14 | 0.211 ± 0.007 | 1.267 ± 0.043 | 1.052 ± 0.035 | 0.068 ± 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Atzl, B.; Pupp, M.; Rupprich, M. The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction. Sustainability 2018, 10, 4031. https://doi.org/10.3390/su10114031
A. Atzl B, Pupp M, Rupprich M. The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction. Sustainability. 2018; 10(11):4031. https://doi.org/10.3390/su10114031
Chicago/Turabian StyleA. Atzl, Beatrice, Maximilian Pupp, and Marco Rupprich. 2018. "The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction" Sustainability 10, no. 11: 4031. https://doi.org/10.3390/su10114031
APA StyleA. Atzl, B., Pupp, M., & Rupprich, M. (2018). The Use of Photocatalysis and Titanium Dioxide on Diesel Exhaust Fumes for NOx Reduction. Sustainability, 10(11), 4031. https://doi.org/10.3390/su10114031