The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration
Abstract
:1. Introduction
2. Research Method
3. Data
4. Results and Discussion
4.1. Regression Results
4.2. Marginal Effects
4.3. Future Scenarios
5. Conclusions
6. Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, J.E.; McCarl, B.A.; Sleeter, B.; Abatzoglou, J.T.; Zhang, H. Adaptation with climate uncertainty: An examination of agricultural land use in the United States. Land Use Policy 2018, 77, 392–401. [Google Scholar] [CrossRef]
- Mu, J.E.; Sleeter, B.M.; Abatzoglou, J.T.; Antle, J.M. Climate impacts on agricultural land use in the USA: The role of socio-economic scenarios. Clim. Chang. 2017, 144, 329–345. [Google Scholar] [CrossRef]
- Tong, C.; Hall, C.A.; Wang, H. Land use change in rice, wheat and maize production in China (1961–1998). Agric. Ecosyst. Environ. 2003, 95, 523–536. [Google Scholar] [CrossRef]
- Xiong, W.; Holman, I.; Lin, E.; Conway, D.; Jiang, J.; Xu, Y.; Li, Y. Climate change, water availability and future cereal production in China. Agric. Ecosyst. Environ. 2010, 135, 58–69. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The Impact of Global Warming on Agriculture: A Ricardian Analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar]
- Mu, J.E.; McCarl, B.A.; Wein, A.M. Adaptation to climate change: Changes in farmland use and stocking rate in the U.S. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 713–730. [Google Scholar] [CrossRef]
- Alexander, P.; Rounsevell, M.D.A.; Dislich, C.; Dodson, J.R.; Engström, K.; Moran, D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob. Environ. Chang. 2015, 35, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Attavanich, W.; McCarl, B.A.; Ahmedov, Z.; Fuller, S.W.; Vedenov, D.V. Effects of climate change on US grain transport. Nat. Clim. Chang. 2013, 3, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Shi, P.; Zhang, Z.; Meng, Y.; Luan, Y.; Wang, J. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: A case study in Hunan Province, China. Clim. Dyn. 2017. [Google Scholar] [CrossRef]
- Headey, D.; Fan, S. Anatomy of a crisis: The causes and consequences of surging food prices. Agric. Econ. 2008, 39, 375–391. [Google Scholar] [CrossRef]
- Wang, J.; Mendelsohn, R.; Dinar, A.; Huang, J. How Chinese Farmers Change Crop Choice to Adapt to Climate Change. Clim. Chang. Econ. 2010, 1, 167–185. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, L.D.; Lippe, R.S.; Grote, U. Determinants of Farmers’ Land Use Decision-Making: Comparative Evidence from Thailand and Vietnam. World Dev. 2017, 89, 199–213. [Google Scholar] [CrossRef]
- Pan, S.; Malaga, J.; He, X. Market liberalization and crop planting decision: A case of China. China Agric. Econ. Rev. 2010, 2, 240–250. [Google Scholar] [CrossRef]
- Gong, B. Agricultural reforms and production in China: Changes in provincial production function and productivity in 1978–2015. J. Dev. Econ. 2018, 132, 18–31. [Google Scholar] [CrossRef]
- Reilly, J.; Tubiello, F.; McCarl, B.; Abler, D.; Darwin, R.; Fuglie, K.; Hollinger, S.; Izaurralde, C.; Jagtap, S.; Jones, J.; et al. Agriculture and Climate Change: New Results. Clim. Chang. 2003, 57, 43–67. [Google Scholar] [CrossRef]
- Tian, Z.; Liang, Z.; Sun, L.; Zhong, H.; Qiu, H.; Fischer, G.; Zhao, S. Agriculture under Climate Change in China: Mitigate the Risks by Grasping the Emerging Opportunities. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1259–1276. [Google Scholar] [CrossRef]
- Murteira, J.M.R.; Ramalho, J.J.S. Regression Analysis of Multivariate Fractional Data. Econ. Rev. 2016, 35, 515–552. [Google Scholar] [CrossRef]
- Correlated Random Effects Models with Unbalanced Panels. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiqtI-jwIzeAhWEZt4KHbN-A1cQFjAAegQICBAC&url=http%3A%2F%2Fecon.msu.edu%2Ffaculty%2Fwooldridge%2Fdocs%2Fcre1_r4.pdf&usg=AOvVaw1fXfCahp7Fk-h-Jb1V1ot2 (accessed on 29 January 2018).
- National Bureau of Statistics of China. China Statistical Yearbook (Multiple Years); China Statistics Press: Beijing, China, 2000–2014. Available online: http://www.stats.gov.cn/enGliSH/Statisticaldata/AnnualData/ (accessed on 13 April 2016).
- National Bureau of Statistics of China. China Rural Statistical Yearbook (Multiple Years); China Statistics Press: Beijing, China, 2001–2014. Available online: http://tongji.cnki.net/kns55/navi/HomePage.aspx?id=N2017030076&name=YMCTJ&floor=1 (accessed on 13 April 2016).
- Zhang, D.; Yao, P.; Na, Z.; Cao, W.; Zhang, S.; Li, Y.; Gao, Y. Soil Water Balance and Water Use Efficiency of Dryland Wheat in Different Precipitation Years in Response to Green Manure Approach. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Calzadilla, A.; Rehdanz, K.; Betts, R.; Falloon, P.; Wiltshire, A.; Tol, R.S.J. Climate change impacts on global agriculture. Clim. Chang. 2013, 120, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fan, S. Estimating Crop-Specific Production Technologies in Chinese Agriculture: A Generalized Maximum Entropy Approach. Am. J. Agric. Econ. 2001, 83, 378–388. [Google Scholar] [CrossRef]
- Schleussner, C.-F.; Lissner, T.K.; Fischer, E.M.; Wohland, J.; Perrette, M.; Golly, A.; Rogelj, J.; Childers, K.; Schewe, J.; Frieler, K.; et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °C and 2 °C. Earth Syst. Dyn. 2016, 7, 327–351. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Rogelj, J.; Sedláček, J.; Fischer, E.M. A scientific critique of the two-degree climate change target. Nat. Geosci. 2016, 9, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Mendelsohn, R. The Impact of Climate Change on Agriculture in Asia. J. Integr. Agric. 2014, 13, 660–665. [Google Scholar] [CrossRef]
- Ji, L.; You, L.; See, L.; Fritz, S.; Li, C.; Zhang, S.; Li, G. Spatial and temporal changes of vegetable production in China. J. Land Use Sci. 2018, 1–14. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Hayashi, Y.; Lin, E. Future climate change, the agricultural water cycle, and agricultural production in China. Agric. Ecosyst. Environ. 2003, 95, 203–215. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Ruane, A.C.; Antle, J.; Elliott, J.; Ashfaq, M.; Chatta, A.A.; Ewert, F.; Folberth, C.; Hathie, I.; Havlik, P.; et al. Coordinating AgMIP data and models across global and regional scales for 1.5 °C and 2.0 °C assessments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20160455. [Google Scholar] [CrossRef] [PubMed]
Explanatory Variables | Variable Descriptions | Mean | Std. Dev | Min | Max |
GrsAvg | Average daily temperature for growing season (March to October), in degrees Celsius | 19.641 | 3.916 | 11.013 | 27.475 |
Precip | Total annual precipitation, in millimeters | 865.400 | 502.200 | 74.900 | 2678.900 |
PlantedScale.lag | The ratio of planted area in Year t over planted area in Year 2000 | 0.983 | 0.121 | 0.666 | 1.680 |
IrrigRate.lag | Lagged term of the ratio of irrigated area over planted area | 0.397 | 0.173 | 0.149 | 1.000 |
Pesticide.lag | Lagged term of pesticide usage in kilograms per ha of planted area | 10.173 | 7.398 | 1.571 | 51.944 |
Fertilizer.lag | Lagged term of fertilizer usage measured in kilograms of nutrients per ha of planted area | 307.940 | 95.010 | 110.720 | 561.110 |
FarmRev.lag | Lagged term of gross output value of farming per planted ha in 1K yuan (2000 RMB) per ha of planted area | 12.178 | 5.416 | 4.502 | 28.313 |
Time Trend | Time trend, with Year 2001 =1, Year 2002 =2, …, and Year 2013 = 13 | 7.000 | 3.746 | 1.000 | 13.000 |
meanGrs | Average mean temperature across all years, in degrees Celsius | 19.641 | 3.877 | 11.339 | 26.786 |
meanPrep | Average total precipitation across years, in millimeters | 865.400 | 456.900 | 192.400 | 1900.300 |
Dependent Variables: Crop Share Proportions | |||||
Tubers | Planted area shares for tuber crops | 0.0673 | 0.0621 | 0.0015 | 0.2264 |
Rice | Planted area shares for rice | 0.1781 | 0.1650 | 0.0000 | 0.6305 |
Wheat | Planted area shares for wheat | 0.1439 | 0.1255 | 0.0000 | 0.5275 |
Maize | Planted area shares for maize | 0.1732 | 0.1535 | 0.0000 | 0.6528 |
Soybeans | Planted area shares for soybeans | 0.0685 | 0.0684 | 0.0000 | 0.4270 |
Oils | Planted area shares for non-soybeans oilseed crops | 0.0931 | 0.0722 | 0.0038 | 0.3985 |
Cotton | Planted area shares for cotton | 0.0295 | 0.0649 | 0.0000 | 0.4339 |
Fibers | Planted area shares for non-cotton fiber crops | 0.0012 | 0.0021 | 0.0000 | 0.0137 |
Special | Planted area shares for specialty crops (sugar crops, tea, and tobacco) | 0.0294 | 0.0417 | 0.0000 | 0.1882 |
Vege | Planted area shares for vegetables | 0.1355 | 0.0767 | 0.0155 | 0.4175 |
Orchards | Planted area shares for orchards | 0.0803 | 0.0620 | 0.0029 | 0.2444 |
Variables | Rice | Maize | Wheat | Soybeans | Tubers | Oil Seeds | Cotton | Vegetables | Orchards | Specialties |
---|---|---|---|---|---|---|---|---|---|---|
GrsAvg | 0.158 | 0.484 | −0.722 ** | −0.134 | −0.680 ** | −0.765 *** | 1.418 *** | −0.475 * | −0.771 *** | 0.019 |
(0.265) | (0.297) | (0.319) | (0.269) | (0.277) | (0.273) | (0.387) | (0.275) | (0.263) | (0.356) | |
GrsAvg2 | −0.008 | −0.023 *** | 0.015 ** | −0.002 | 0.011 * | 0.013 ** | −0.041 *** | 0.005 | 0.012 * | −0.006 |
(0.006) | (0.007) | (0.007) | (0.006) | (0.006) | (0.006) | (0.010) | (0.006) | (0.006) | (0.009) | |
Precip | −0.071 | −0.087 | 0.042 | −0.161 * | −0.438 *** | −0.183 ** | −0.076 | −0.275 *** | −0.486 *** | −0.100 |
(0.092) | (0.103) | (0.095) | (0.093) | (0.098) | (0.090) | (0.095) | (0.090) | (0.094) | (0.109) | |
Prep2 | 0.003 | 0.001 | −0.005 | 0.006 ** | 0.016 *** | 0.007 ** | 0.003 | 0.010 *** | 0.017 *** | 0.005 |
(0.003) | (0.004) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | |
IrrigRate.lag | −2.633 *** | −5.406 *** | −1.478 | −3.531 *** | −7.108 *** | −1.645 * | 5.209 *** | −2.393 ** | −3.606 *** | −7.275 *** |
(0.874) | (0.888) | (1.025) | (0.902) | (0.991) | (0.971) | (0.919) | (1.007) | (0.854) | (0.878) | |
Time Trend | 0.046 ** | 0.035 | 0.052 * | 0.037 | 0.101 *** | 0.069 *** | 0.074 *** | 0.027 | 0.033 | 0.073 ** |
(0.023) | (0.026) | (0.028) | (0.023) | (0.029) | (0.026) | (0.028) | (0.026) | (0.028) | (0.031) | |
Pesticide.lag | −0.064 *** | −0.101 *** | −0.058 ** | −0.050 ** | −0.092 *** | −0.057 *** | 0.036 | −0.083 *** | −0.092 *** | −0.088 *** |
(0.020) | (0.022) | (0.023) | (0.020) | (0.023) | (0.021) | (0.025) | (0.021) | (0.021) | (0.021) | |
Fertilizer.lag | 0.068 *** | 0.127 *** | 0.105 *** | 0.069 *** | 0.050 *** | 0.088 *** | 0.126 *** | 0.081 *** | 0.069 *** | 0.075 *** |
(0.016) | (0.017) | (0.016) | (0.016) | (0.017) | (0.014) | (0.014) | (0.015) | (0.017) | (0.019) | |
FarmRev.lag | 0.160 *** | 0.196 *** | 0.093 *** | 0.089 *** | 0.139 *** | 0.057 * | −0.058 * | 0.220 *** | 0.257 *** | 0.193 *** |
(0.031) | (0.032) | (0.035) | (0.034) | (0.032) | (0.029) | (0.035) | (0.031) | (0.033) | (0.036) | |
PlantedScale. lag | −1.441 ** | −3.239 *** | −4.530 *** | −2.918 *** | −5.799 *** | −5.136 *** | −0.096 | −4.020 *** | −2.773 *** | −1.697 * |
(0.612) | (0.599) | (0.684) | (0.666) | (0.683) | (0.642) | (0.572) | (0.583) | (0.796) | (1.015) | |
meanGrs | −0.059 | 0.029 | 0.129 | −0.066 | 0.166 | 0.028 | 0.352 ** | 0.166 | 0.404 ** | 0.078 |
(0.169) | (0.178) | (0.190) | (0.178) | (0.180) | (0.173) | (0.146) | (0.178) | (0.181) | (0.206) | |
meanPrep | 0.299 *** | −0.040 | −0.228 *** | 0.064 | 0.070 | 0.111 * | −0.224 *** | 0.105 * | 0.011 | 0.203 *** |
(0.057) | (0.066) | (0.065) | (0.058) | (0.063) | (0.057) | (0.063) | (0.060) | (0.065) | (0.073) | |
Constant | 2.704 | 4.783 * | 13.661 *** | 10.677 *** | 17.141 *** | 16.151 *** | −19.686 *** | 9.947 *** | 9.144 *** | 2.791 |
(2.509) | (2.887) | (2.949) | (2.675) | (2.883) | (2.783) | (4.018) | (2.777) | (2.820) | (3.394) |
Variables | Rice | Maize | Wheat | Soybean | Tubers | Oils | Cotton | Vege | Orchards | Special | Fibers |
---|---|---|---|---|---|---|---|---|---|---|---|
GrsAvg | 0.0184 ** | −0.0345 *** | 0.0160 * | 0.0023 | −0.0004 | 0.0014 | 0.0013 | −0.0015 | −0.0038 | 0.0006 | 0.0003 |
(0.0075) | (0.0116) | (0.0087) | (0.0037) | (0.0023) | (0.0046) | (0.0023) | (0.0038) | (0.0038) | (0.0027) | (0.0002) | |
Precip | 0.0098 *** | 0.0000 | 0.0027 | 0.0006 | −0.0039 *** | 0.0007 | 0.0008 | −0.0049 *** | −0.0071 *** | 0.0011 | 0.0001 |
(0.0024) | (0.0039) | (0.0032) | (0.0012) | (0.0008) | (0.0015) | (0.0006) | (0.0012) | (0.0011) | (0.0009) | (0.0001) | |
IrrigRate.lag | 0.1137 *** | −0.4935 *** | 0.2491 *** | −0.0198 | −0.1682 *** | 0.1438 *** | 0.1777 *** | 0.1189 *** | −0.0200 | −0.1053 *** | 0.0035 *** |
(0.0349) | (0.0477) | (0.0398) | (0.0160) | (0.0157) | (0.0156) | (0.0190) | (0.0271) | (0.0195) | (0.0213) | (0.0011) | |
Time trend | −0.0000 | −0.0026 | 0.0008 | −0.0006 | 0.0024 *** | 0.0021 *** | 0.0006 | −0.0026 *** | −0.0008 | 0.0007 | −0.0000 ** |
(0.0012) | (0.0019) | (0.0016) | (0.0006) | (0.0005) | (0.0007) | (0.0004) | (0.0008) | (0.0006) | (0.0004) | (0.0000) | |
Pesticide.lag | 0.0018 * | −0.0061 *** | 0.0022 | 0.0017 ** | −0.0008 * | 0.0015 ** | 0.0023 *** | −0.0013 ** | −0.0010 *** | −0.0004 | 0.0001 *** |
(0.0010) | (0.0019) | (0.0014) | (0.0007) | (0.0005) | (0.0006) | (0.0005) | (0.0005) | (0.0004) | (0.0003) | (0.0000) | |
Fertilizer.lag | −0.0041 *** | 0.0084 *** | 0.0019 ** | −0.0016 *** | −0.0018 *** | −0.0003 | 0.0007 *** | −0.0014 *** | −0.0013 *** | −0.0004 * | −0.0001 *** |
(0.0007) | (0.0012) | (0.0009) | (0.0004) | (0.0003) | (0.0005) | (0.0002) | (0.0003) | (0.0003) | (0.0003) | (0.0000) | |
FarmRev.lag | 0.0011 | 0.0098 *** | −0.0084 *** | −0.0047 *** | −0.0006 | −0.0086 *** | −0.0044 *** | 0.0090 *** | 0.0060 *** | 0.0010 * | −0.0002 *** |
(0.0017) | (0.0025) | (0.0020) | (0.0009) | (0.0006) | (0.0009) | (0.0006) | (0.0008) | (0.0008) | (0.0005) | (0.0000) | |
PlantedScale. lag | 0.3405 *** | 0.0188 | −0.1689 *** | 0.0295 | −0.1083 *** | −0.1615 *** | 0.0676 *** | −0.0958 *** | 0.0317 | 0.0426 ** | 0.0036 *** |
(0.0559) | (0.0555) | (0.0476) | (0.0235) | (0.0214) | (0.0324) | (0.0093) | (0.0218) | (0.0270) | (0.0216) | (0.0007) | |
meanGrs | −0.0242 *** | −0.0105 | 0.0076 | −0.0103 *** | 0.0040 * | −0.0041 | 0.0058 ** | 0.0125 *** | 0.0191 *** | 0.0001 | −0.0001 |
(0.0080) | (0.0114) | (0.0090) | (0.0037) | (0.0023) | (0.0044) | (0.0024) | (0.0041) | (0.0040) | (0.0030) | (0.0002) | |
meanPrep | 0.0458 *** | −0.0198 *** | −0.0384 *** | 0.0013 | 0.0010 | 0.0057 *** | −0.0057 *** | 0.0080 *** | −0.0020 | 0.0041 *** | −0.0001 |
(0.0033) | (0.0057) | (0.0040) | (0.0017) | (0.0011) | (0.0020) | (0.0008) | (0.0017) | (0.0015) | (0.0012) | (0.0001) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.W.; Mu, J.E.; Musumba, M.; McCarl, B.A.; Gu, X.; Zhou, Y.; Cao, Z.; Li, Q. The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration. Sustainability 2018, 10, 3757. https://doi.org/10.3390/su10103757
Zhang YW, Mu JE, Musumba M, McCarl BA, Gu X, Zhou Y, Cao Z, Li Q. The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration. Sustainability. 2018; 10(10):3757. https://doi.org/10.3390/su10103757
Chicago/Turabian StyleZhang, Yuquan W., Jianhong E. Mu, Mark Musumba, Bruce A. McCarl, Xiaokun Gu, Yuanfei Zhou, Zhengwei Cao, and Qiang Li. 2018. "The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration" Sustainability 10, no. 10: 3757. https://doi.org/10.3390/su10103757
APA StyleZhang, Y. W., Mu, J. E., Musumba, M., McCarl, B. A., Gu, X., Zhou, Y., Cao, Z., & Li, Q. (2018). The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration. Sustainability, 10(10), 3757. https://doi.org/10.3390/su10103757